
An Empirical Study on the Usage of the Swift
Programming Language

Marcel Rebouças, Gustavo Pinto,
Felipe Ebert, Weslley Torres

Federal University of Pernambuco
Recife, PE, Brazil

{mscr,ghlp,fe,wst}@cin.ufpe.br

Alexander Serebrenik
Eindhoven University of Technology

Eindhoven, The Netherlands
a.serebrenik@tue.nl

Fernando Castor
Federal University of Pernambuco

Recife, PE, Brazil
castor@cin.ufpe.br

Abstract—Recently, Apple released Swift, a modern program-
ming language built to be the successor of Objective-C. In less
than a year and a half after its first release, Swift became
one of the most popular programming languages in the world,
considering different popularity measures. A significant part of
this success is due to Apple’s strict control over its ecosystem,
and the clear message that it will replace Objective-C in a near
future. According to Apple, “Swift is a powerful and intuitive
programming language[...]. Writing Swift code is interactive and
fun, the syntax is concise yet expressive.” However, little is known
about how Swift developers perceive these benefits. In this paper,
we conducted two studies aimed at uncovering the questions and
strains that arise from this early adoption. First, we perform
a thorough analysis on 59,156 questions asked about Swift on
StackOverflow. Second, we interviewed 12 Swift developers to
cross-validate the initial results. Our study reveals that developers
do seem to find the language easy to understand and adopt,
although 17.5% of the questions are about basic elements of
the language. Still, there are many questions about problems in
the toolset (compiler, Xcode, libraries). Some of our interviewees
reinforced these problems.

I. INTRODUCTION

In the last years, the mobile app market is facing a fascinat-
ing growth, with iOS and Android devices playing a central
role in this arena. As a recent article shows1, over a billion
of mobile devices are going to be sold in 2015 — which
is about twice the number of personal computers. This fact
creates a high demand not only for new mobile developers,
but also for new techniques, tools, and frameworks to ease
mobile programming practice. As an attempt to mitigate this
problem, in June 2014 Apple released Swift, a modern, multi-
paradigm language that combines imperative, object-oriented,
and functional programming.

More interestingly, however, is that Swift is experiencing a
fast popularity growth. According to specialized websites23,
Swift is already one of the top-20 most popular programming
languages in the world. Most of this success is due to the
inherited Objective-C ecosystem, with more than 700 million
devices sold4. Also, considering that Apple has been using
Objective-C for almost 20 years (it was acquired in 1996),

1http://www.entrepreneur.com/article/236832/
2http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
3http://redmonk.com/sogrady/2015/07/01/language-rankings-6-15/
4http://cnet.co/1Q7v1ML

we can expect Swift’s lifespan to be similarly long. This dis-
tinctive scenario presents a unique opportunity to understand
the adoption of a programming language from its very early
stages. Despite the growing interest of studies aimed at identi-
fying the impact of specific language designs on people [12],
[13], not many works target specifically elements of the Apple
ecosystem. Until January 2015, app store developers earned a
revenue of US$ 25 billion5, which is larger than any other app
store, to the best of our knowledge.

This work is a first step in the quest to understand the
benefits, drawbacks, and hurdles of being an early adopter of
a programming language that is bound to be widely adopted.
Since this research is still in its early stages, in this paper we
focus on a high-level research question and two that emphasize
differences between Swift and Objective-C. Specifically, the
questions we are trying to answer are:

RQ1. What are the most common problems faced by Swift
developers?

RQ2. Are developers having problems with the usage of Op-
tionals?

RQ3. Are developers having problems with error handling in
Swift?

Our interest in Optionals (RQ2) and error handling mechanism
(RQ3) is related to the fact that those features constitute the
major differences between Swift and its predecessor Objective-
C, and therefore can hinder adoption of Swift by the experi-
enced Object-C developers.

Although many researchers have proposed methods for
evaluating programming languages [11], [13], no consensus
has emerged from a methodological standpoint, e.g, methods
proposed in the literature are prone to be subjective [12]. In
this paper we present two studies. The first one is based on
a quantitative and qualitative analysis of data from Stack-
Overflow, a collaborative Q&A website. We complemented
these results with our second study: 12 interviews with Swift
developers with different backgrounds. These two studies
provide important insights on the current state of practice Swift
programming.

5http://apple.co/1IvR211

http://www.entrepreneur.com/article/236832/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://redmonk.com/sogrady/2015/07/01/language-rankings-6-15/
http://cnet.co/1Q7v1ML
http://apple.co/1IvR211

II. RELATED WORK

There are a plethora of studies targeting different program-
ming language usage and constructs [12], [4], [5], [15], [13].
More specifically, Schmager et al. [12] evaluated the Go
programming language, Chandra et al. [4] compared Java and
C#, in terms of their strengths and weaknesses, Hadjerrouit [5]
evaluated Java as a first programming language, Vasilescu et
al. [15] has studied which programming languages are known
together, and Stefik et al. [13] discussed the responsibilities
the community has in regard to the programming language
wars (the discussion about their differences and impacts).
StackOverflow has also been target of different software
engineering studies [7], [1], [9], [14], [15]. The closest work
to us is from Barua et al. [1]. Although we shared the same
methodology, Barua et al. focused on the main topics of
interest on StackOverflow, while we are more restrict to the
Swift usage. Also, when Barua et al. conducted their study,
Swift was not even launched, so our findings do not overlap
with theirs in any sense.

III. METHODOLOGY

Here we describe how we acquired and processed data
(§ III-A), and how the interviews were conducted (§ III-B).
All data is available for replication purposes6.

A. Study 1: Mining Software Repositories

We used the StackExchange7 website to extract StackOver-
flow questions, answers, comments, and their metadata (e.g.,
Score, View Count, Answer Count, Favorite Count). We re-
trieve questions that contain any of the following tags: ‘swift’,
‘swift2’, ‘swift-playground’, ‘swift-json’, ‘swift-extensions’,
‘sqlite.swift’, ‘swift-protocols’, ‘swift-array’, ‘cocos2d-swift’,
‘swift-dictionary’, ‘objective-c-swift-bridge’, ‘rx-swift’, ‘dol-
lar.swift’, ‘swift2.0’ and ‘swift-custom-framework’. We used
these tags because StackOverflow associates them when
searching for ‘swift’. One might argue that tagging is a manual
process, which would incur in mistagged questions. However,
StackOverflow autocompletes tags, thus preventing one from
using a misleading tag. 59,156 questions were found. They
span the period from 2/06/2014 (when Swift was released) to
11/10/2015 (when we ran the query).

Since manual inspection of 59 thousand of questions is not
feasible, we used the approach of Barua et al. [1], based
on Latent Dirichlet Allocation (LDA) [3], a topic modeling
algorithm8. This algorithm summarizes large amounts of text
documents. LDA assumes that each document, that is, the
StackOverflow questions, in a given set is a mix of different
topics, so that each word in the document can be associated
with one or more topics with a certain proportion. LDA has
been extensively applied in many domains [2], [16].

Before feeding the LDA with our questions, we re-
moved (1) content inside the tags <code>, <pre> and

6http://bit.ly/saner-swift-developers
7http://data.stackexchange.com/
8We used the implementation available in the Mallet-2.0.8RC2 tool.

<blockquotes>, (2) HTML tags, (3) URLs, (4) punctu-
ation, (5) one-letter words, and (6) stop word (e.g., an, by,
the). We also stemmed the remaining words using the Porter
stemming algorithm [10], to reduce words to their base form
(e.g., “compilation” and “compiler” are reduced to “compil”).
As an example, the question “<p> I would like to try out
Swift, but currently don’t have an Apple developer’s account.
Would it be possible to compile and run it without having
Xcode 6?</p>” is reduced to “swift appl develop account
compil run xcode”.

LDA uses different parameters. The first one is the number
of topics created. There is no “right” value for this parameter
as it depends on the granularity one wants to achieve. We chose
25 after testing values ranging from 10 to 35. Also, since a
document can have multiple topics, we denote the membership
of a topic ti in a document d as θ(dk, ti). According to Blei et
al. [3], a document normally contains between 1 and 5 topics,
with a membership value above 10%. For this reason, we set
the membership threshold δ to 10%. This value removes noise
topics from the output, while keeping the dominant ones. Still,
we used a similar share metric [1] (Equation 1) to rank the
topics. The share of a topic ti is the sum of the memberships
of this particular topic for each document d.

share(ti) =
1

|D|
∑
d∈D

θ(dk, ti) (1)

The final output is a list of 25 topics mapped to each
document analyzed, organized by their share. We used this
processed data to provide answers to RQ1, and we performed
additional queries to answer RQ2 and RQ3.

B. Study 2: Interviews

We conducted semi-structured interviews to cross-validate
the results obtained in our first study. We interviewed 2
students and 10 professionals. Three interviews were con-
ducted in person, while the remaining ones were conducted
via phone. Interviews lasted approximately 20 minutes and
audio was recorded. Among the professionals, 3 are Swift
instructors in educational programs for iOS development, 1
works for a Brazilian software company, and 6 are open-source
developers of popular (in terms of number of stars) Swift
projects hosted on Github. Six of them consider themselves
as “strongly familiar” with Swift, and the other 6 consider
themselves as “familiar”. Also, 11 of them have an Objective-
C background. On average, they have 4 years of software
development experience. We refer to them as P1 — P12.

The interviews were grounded in RQ1–3. We started asking
about the interviewee’s background in software development.
Then, we moved to specific questions, including three ques-
tions about the learning process and two questions about the
challenges that they faced when writing Swift applications, if
any. Finally, we asked about problems and solutions found
when using Optionals and Error Handling mechanisms.To
analyze the data, we first transcribed all the audio files. Each
transcript, along with the associated recording, was analyzed
by two of the authors. We then coded the answers, analyzed

http://bit.ly/saner-swift-developers
http://data.stackexchange.com/

TABLE I
THE LDA TOPICS, SHARE, AND THE % OF QUESTIONS ASSOCIATED.

Topic Share Questions Category
Error—General 7.5% 36.7% General Problems
UI—Navigation 5.0% 15.5% Cocoa Framework
Error—Debugging 4.5% 16.5% Testing and Errors
Q&A 4.5% 22.0% General Problems
Data Storage 4.4% 14.6% Standard Library
OO Programming 4.3% 15.3% Standard Library
Data Types 4.1% 13.4% Standard Library
Objective-C Interop. 3.8% 11.8% Objective-C
UI—TableView 3.7% 12.0% Cocoa Framework
IDE—Xcode 3.6% 13.5% IDE
iOS Testing 3.5% 13.2% Testing and Errors
UI—Positioning 3.5% 10.6% Cocoa Framework
UI—Actions 3.4% 12.8% Cocoa Framework
Cloud/Social Media 2.9% 9.4% Others
Image Handling 2.9% 10.1% Cocoa Framework
Networking 2.8% 8.8% Others
Game Development 2.8% 7.2% Others
Variables Def/Use 2.5% 9.6% Standard Library
UI—Animations 2.4% 8.1% Cocoa Framework
Noise—General Words 2.2% 9.6% Others
Multithread/Sched. Func 2.2% 8.7% Standard Library
Optionals/Nil 2.2% 8.5% Testing and Errors
UI—Text 2.0% 8.0% Cocoa Framework
Media/Time Comp. 2.0% 6.0% Others
Location/Web Comp. 1.7% 5.8% Others

the keywords, organized them into categories. We followed the
guidelines on the open coding procedure [6].

IV. RESULTS

Here we organize the results in terms of each RQ.

A. RQ1: The most common problems

Table I summarizes the topics found. The share does not
sum up to 100%, because we did not take into consideration
topics with membership lower than 10%. For simplifying
purposes, we manually grouped the topics into seven main
categories (fourth column). We describe four of them below.

Swift Standard Library (5 topics, 17.5% share). The library
comprehends the base layer of functionality for writing Swift
programs, including data types, data structures, functions and
methods, protocols, among many others. Even though Swift is
advertised as “a language that is easy and fun to use”9, almost
1/5 of the questions are about the language syntax and con-
structs, e.g., “How do Ranges work in Swift?” (Q24044851).
Interestingly, 10 of the interviewees reported that they did not
have problems with the language syntax.

This paradox may be explained due to the fact that all
interviewees were experienced with other programming lan-
guages, and 11 of them knew Objective-C beforehand. Since
Swift and Objective-C share some features (e.g., the same
readability of named parameters), part of the learning curve
is reduced. This suggests that Swift might be easy to learn
if developers have previous experience with other languages,
specially Objective-C. Meanwhile, P4 and P6 assured that they
do not think that knowing Objective-C helped on learning
Swift. Examples of problems in include: understanding weak

9https://developer.apple.com/swift/

and strong references (Q24016527), using generic types
(Q24542186) and working with closures (Q30401439).

Cocoa Framework (7 topics, 22.9% share). Cocoa Touch
is the core framework used to develop iOS applications. Not
surprisingly most questions in this category are related to UI:
e.g., “How do I programmatically create graphical elements
(like a UIButton) in Swift?” (Q24030348). The number of
topics, and the total share of this category are higher than
Swift Standard Library: this can be explained by strong ties
of Swift to mobile development, that requires Cocoa. As
P10 stated “There isn’t much sense in learning Swift without
learning and using the frameworks”. Examples of problems
include: properly setting up layout constraints (Q25301053)
and correct customization of UI elements (Q24266467).

Testing and Errors (3 topics, 10.2% share). 11 of 12 of
the interviewees complained about the Swift compiler and the
error messages, and indicated that those were a nuisance in the
usage of the language (e.g., Q29031270, Q25353790). As
P9 stated, “The compiler was quite unstable sometimes, which
led to errors that we didn’t expect. Sometimes, I didn’t even
knew the cause of it, just how to fix it.”. The Swift changelog10

shows that those issues were known to the language designers.
P4 was more critical saying that “the biggest problem by far
is the instability of the tools, because Swift compiler is like
the worst compiler I could ever imagine and that multiplied by
hundred, I think.”. Unknown error messages are also common
problems reported in StackOverflow (e.g., Q32743382). The
lack of backward compatibility as also a nuisance reported in
the interviews, as P10 said “the version changes made some
of the outdated code to stop working, which was a problem
when using APIs”.

Integration with Objective-C (1 topic, 3.8% share). Swift
and Objective-C share frameworks, which requires Swift de-
velopers to have an Objective-C background. This need is
recognized by the interviewees: “To someone to be considered
an iOS developer, he needs to know Objetive-C” (P11).
StackOverflow users often report the need of workaround to
integrate with Objective-C. For instance, when asked “How
do I add a Objective C Bridging Header for my framework
that imports sqlite3 into my Swift file?” (Q24841144), a
respondent said that: “In recent Xcode versions this solution
would give the error ‘Using bridging headers with framework
targets is unsupported’. The workaround I’ve been using is
to make the C-header public in the file inspector and import
it in MyFramework.h”. This suggest that the current toolset
needs improvement with integration compatibilities. Examples
of problems include: correctly setting up a project to use
Objective-C files (Q24146677) and translating Objective-C
code to the equivalent in Swift (Q24005678).

B. RQ2: The problems with Optionals usage

Swift makes use of optional types: “var x: Int?” means
that the variable x either has a value and this value is
an integer, or it does not have a value at all. We studied

10https://developer.apple.com/swift/blog/?id=22

Swift’s optionals for three reasons. First, although common
in functional languages optional types are rarely available in
imperative languages. Second, in Swift optionals types are
pervasive. Third, optionals are not available in Objective-C and
can thus hinder adoption of Swift by Objective-C developers.

The LDA technique classified 1,451 questions (8.5% of the
total) as Optionals related (see Table I). Since this high number
of questions prevents manual analysis from being successful,
we decide to study the questions that had a high LDA score.
We use this approach because, after a manual investigation,
we observed that these questions are more likely to be related
to Optionals concerns. On the other hand, questions with a
low LDA score are not directly associated with Optionals
usage, for instance, the user wants to improve one aspect
of her application, which is using an Optional variable (e.g.,
Q30147712, score: 0.1053). We then selected and investi-
gated the 3rd quartile of questions (363 ones) ranked using
their score value. When analyzing these questions, we found
and removed 10 false-positive questions (e.g., Q29313022),
resulting in 353 questions. After examining the title, the ques-
tion body, and the associated tags of these selected questions,
we ended up with 4 categories of questions. Due to space
constrains, we provide discussions to three of them.

Errors (203 occurrences). Most questions are related to
errors that happen during runtime or compile time. The most
common error, “fatal error: unexpectedly found nil while
unwrapping an Optional value”, has 185 occurrences (52.40%
of all selected questions). This error occurs when a user is
trying to unwrap an optional variable that holds a nil value.
Since Swift APIs use Optionals extensively, this error happens
in various contexts including graphics (Q24948302), audio
(Q29730819) and URLs (Q28882954). As a solution to
this problem, several StackOverflow users and three intervie-
wees have pointed the use of optional chaining.

Basic Usage (88 occurrences). This category groups
questions that deals with Optional basic usage. For in-
stance, (1) checking the value of an optional variable (e.g.,
Q25523305), (2) unwrapping an optional variable (e.g.,
Q33049246), and (3) printing an optional variable. Although
simple, the printing example is rather common (11 occur-
rences). One StackOverflow user summarized this problem
as: “For one of my static labels on my main story board,
it prints out Optional(”United States”). However, I would
like it to print out “United States”. So my question is, how
do I get rid of the “Optional” part?” (Q32101920). This
happens because the user is trying to print the value of an
optional variable which was not unwrapped. The solution is
straightforward: unwrap the variable before printing. Yet, some
interviewees reported difficulties when using the operators !
and ?, which “are not straight-forward to understand” (P9).

Optional Idiosyncrasies (38 occurrences). Here we
group questions that focus on peculiar Optional features.
Most of the questions deal with Optional chaining (e.g.,
Q28046614), with 13 occurrences, and Optional binding
(e.g., Q26576366), with 7 occurrences. Optional chaining is
an important strategy to deal with Optionals. It not only favors

readability, but it also makes the code safer because it avoids
forced unwraps, which could lead to the “unexpectedly found
nil while unwrapping” error. Multiple calls can be chained
together, and the whole chain fails elegantly if any part of it
is nil. P2 also said that optional chaining is “an alternative
instead of using if and elses and it makes your code cleaner”.

C. RQ3: The problems with error handling usage

We study the Error Handling mechanism because Swift
only recently introduced it in its 2.0 release. In the 2.0
approach, errors are thrown using the throw statement, and
are handled by using the do-try-catch syntax. Before that,
Swift developers had to use the old associative Objective-C
solution, which envolves using an NSError object (an object
that encapsulates information about an error condition). Here
we analyze if developers are using NSError, using ad hoc
solutions, or if they are migrating to the Swift 2.0 solutions.
Since the LDA technique did not identify topics related to
error handling, we performed additional queries with specific
Error Handling terms, including “NSError”, “except handl”,
“try”, “catch”, “error”, “finally”, “defer”, and “throw”. This
query returned 563 questions. While manually analyzing these
question, we found that 411 of them were false positive (e.g.,
Q27325139 deals with errors in general). After removing
these questions, we ended up with 152 Error Handling related
questionsand categorized them into two categories.

How to handle error in Swift? (74 occurrences). While
some developers suggest that error handling can be done
using the old associative NSError (e.g., Q27570344,
Q27915383), we found that some developers are also us-
ing the newly introduced Error Handling mechanism (e.g.,
Q31490485, Q32650050). More interestingly, however, is
the fact that 14 developers are proposing the usage of an ad hoc
approach: result enumerations (Q27611433, Q28552710).
Indeed, P3 mentioned that “A lot of people in the community
are using result enums”. Still, P3 raised that the current mech-
anism that Swift provides does not support asynchronous com-
putation, which is a unfortunate since mobile applications are
becoming asynchronous to improve responsiveness [8]. One
StackOverflow user also raised the same point (Q30812959).

How to migrate to Swift 2.0? (78 occurrences). In this
group there are questions about how to translate error handling
from another language like Java or Objetive-C into Swift 2.0
(e.g., Q31667074). Questions like that, might indicate that
developers are migrating to the new error handling mechanism.
There are also questions (e.g., Q32809294) about compiling
errors due to the migration process. These errors happened for
various reasons, like not knowing how to use try and catch
statements. Multiple questions (Q32694669, Q32651449)
also asked about the “Call can throw, but is not marked with
try and the error is not handled” error, which was solved by
correctly using the do-try-catch pattern.

V. DISCUSSIONS

Overall Assessment. Developers seem to find the language
easy to understand and adopt. This is the opinion of most

of our interviewees. Also, the majority of the questions are
about libraries and frameworks, instead of the language itself.
Nonetheless, a considerable number of questions are targeting
Optional Types, which does not exist in Objective-C. Since
Swift has other features that are not in Objective-C which are
not mentioned as frequently, such as overflow operators, this
large number of questions about optionals suggests that this
subject is both relevant and non-trivial. This is reinforced by
answers from some of our interviewees.

In addition, it may still be too early to make a switch to
Swift for production development. Many questions on Stack-
Overflow pertain to bugs in the toolset and error messages
that are either hard-to-understand or unhelpful. One of our
interviewees went so far as claiming that “Swift compiler is like
the worst compiler I could ever imagine and that multiplied
by hundred”. This result is not entirely surprising, considering
that the language has just a year old. The Swift website states
however that “Swift is ready for your next project”11.

Implications. Software developers can learn from the mis-
takes made by their peers. For instance, learning how to use
Optional variables is important and since Swift frameworks
use this construct intensively, they cannot ignore it (RQ2).
Since some developers argued that the error handling mecha-
nism that Swift provides is not effective (e.g, it does not handle
asynchronous code), researchers can conduct empirical studies
to further investigate this claim, and introduce techniques to
improve this mechanism. Tool makers can take advantage
of the high number of questions related to User Interface
(RQ1), and develop tools to make the usage, customization
and animations of UI elements easier. Still, the majority of
problems related to Optional usage were related to inappro-
priately unwrapping optional variables (RQ2). Tool makers
can use this finding, and improve their tools to provide hints
of when it is safe to unwrap a variable. Yet, we found that
several developers were having problems with the transition
from Objective-C to Swift (RQ3). For instance, 38 questions
asked about migrating their code from Objective-C NSError
mechanism to the Swift 2 error handling one. Tool vendors
can provide mechanism to assist developers in this task.

Threats to Validity. The first threat is related to the number
of LDA topics chosen. Although there is no “right” solution,
we ran several tests to verify the number of topics that best
fits in our study. Second, due to the high number of questions,
we manually analyzed only a subset of Optionals and Error
Handling-related questions. However, we believe that this sam-
ple is representative (see the beginning of § IV-B and § IV-C).
Third, we use a single Q&A website, StackOverflow, which is
one of the most popular among developers. We also correlated
the findings with 12 interviews. Fourth, our interview script
might not have covered all possible questions. However, we
also designed the interviews to be semistructured. This allowed
us to ask questions that were not listed in the script.

11https://developer.apple.com/swift/

VI. CONCLUSION

With less than two years, Swift became one of the most
popular programming languages in the world. After conduct-
ing two studies (12 interviews plus an in-depth analysis of
StackOverflow), we found that there is no rose garden. Al-
though experienced developers seem to find the language easy
to understand and adopt, a significant proportion of questions
on StackOverflow are about arrays and data types. Even
though optional types are pervasive, most of the problems
report trivial unwrapping errors. There are also many questions
about bugs in the toolset (compiler, Xcode, libraries) and also
about error messages that are either hard-to-understand or
unhelpful. Interviewees were unanimous suggesting that the
Swift compiler needs urgent improvement.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
helpful comments. Gustavo is supported by CAPES. Felipe is
supported by FACEPE/Brazil (0791-1.03/13). Fernando is sup-
ported by CNPq/Brazil (304755/2014-1, 487549/2012-0 and
477139/2013-2), FACEPE/Brazil (APQ- 0839-1.03/14) and
INES (CNPq 573964/2008-4, FACEPE APQ-1037-1.03/08,
and FACEPE APQ-0388-1.03/14).

REFERENCES

[1] A. Barua, S. W. Thomas, and A. E. Hassan. What are developers talking
about? an analysis of topics and trends in Stack Overflow. Empirical
Softw. Engg., 19(3):619–654, June 2014.

[2] I. Bhattacharya and L. Getoor. A latent Dirichlet model for unsupervised
entity resolution. In SIAM ICDM, pages 47–58, 2006.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J.
Mach. Learn. Res., 3:993–1022, Mar. 2003.

[4] S. S. Chandra and K. Chandra. A comparison of Java and C#. J. Comput.
Sci. Coll., 20(3):238–254, Feb. 2005.

[5] S. Hadjerrouit. Java as first programming language: A critical evaluation.
SIGCSE Bull., 30(2):43–47, June 1998.

[6] R. Hoda, J. Noble, and S. Marshall. Developing a grounded theory to
explain the practices of self-organizing agile teams. Empirical Softw.
Engg., 17(6):609–639, Dec. 2012.

[7] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza, M. Hauswirth, and
N. Nystrom. Use at your own risk: The Java unsafe API in the wild. In
OOPSLA, pages 695–710, 2015.

[8] S. Okur, D. L. Hartveld, D. Dig, and A. v. Deursen. A study and toolkit
for asynchronous programming in C#. In ICSE, pages 1117–1127, 2014.

[9] G. Pinto, F. Castor, and Y. D. Liu. Mining questions about software
energy consumption. In MSR, pages 22–31, 2014.

[10] M. F. Porter. Readings in information retrieval. chapter An Algorithm
for Suffix Stripping, pages 313–316. Morgan Kaufmann, 1997.

[11] T. W. Pratt and M. V. Zelkowitz. Programming Languages: Design and
Implementation. Prentice Hall PTR, 4th edition, 2000.

[12] F. Schmager, N. Cameron, and J. Noble. GoHotDraw: Evaluating the
Go programming language with design patterns. In PLATEAU, pages
10:1–10:6, 2010.

[13] A. Stefik and S. Hanenberg. The programming language wars: Questions
and responsibilities for the programming language community. In
Onward!, pages 283–299, 2014.

[14] B. Vasilescu, A. Capiluppi, and A. Serebrenik. Gender, representation
and online participation: A quantitative study. Interacting with Comput-
ers, 26(5):488–511, 2014.

[15] B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand. The Babel of
software development: Linguistic diversity in open source. In SocInfo,
volume 8238 of LNCS, pages 391–404. Springer, 2013.

[16] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik. EnTagRec: An
enhanced tag recommendation system for software information sites.
In ICSME, pages 291–300, Sept 2014.

