
On the Adoption of Kotlin on Android
Development: A Triangulation Study

Victor Oliveira
Informatics Center - UFPE
Tempest Security Intelligence

Recife, Brazil
victor.oliveira@tempest.com.br

Leopoldo Teixeira
Informatics Center

Federal University of Pernambuco
Recife, Brazil

lmt@cin.ufpe.br

Felipe Ebert
Informatics Center

Federal University of Pernambuco
Recife, Brazil
fe@cin.ufpe.br

Abstract—In 2017, Google announced Kotlin as one of the
officially supported languages for Android development. Among
the reasons for choosing Kotlin, Google mentioned it is “concise,
expressive, and designed to be type and null-safe”. Another
important reason is that Kotlin is a language fully interoperable
with Java and runs on the JVM. Despite Kotlin’s rapid rise in
the industry, very little has been done in academia to understand
how developers are dealing with the adoption of Kotlin. The
goal of this study is to understand how developers are dealing
with the recent adoption of Kotlin as an official language for
Android development, their perception about the advantages
and disadvantages related to its usage, and the most common
problems faced by them. This research was conducted using
the concurrent triangulation strategy, which is a mixed-method
approach. We performed a thorough analysis of 9,405 questions
related to Kotlin development for the Android platform on Stack
Overflow. Concurrently, we also conducted a basic qualitative
research interviewing seven Android developers that use Kotlin
to confirm and cross-validate our findings. Our study reveals that
developers do seem to find the language easy to understand and
to adopt it. This perception begins to change when the functional
paradigm becomes more evident. Accordingly to the developers,
the readability and legibility are compromised if developers
overuse the functional flexibility that the language provides. The
developers also consider that Kotlin increases the quality of the
produced code mainly due to its null-safety guarantees, but it
can also become a challenge when interoperating with Java,
despite the interoperability being considered as an advantage.
While adopting Kotlin requires some care from developers, its
benefits seem to bring many advantages to the platform according
to the developers, especially in the aspect of adopting a more
modern language while maintaining the consolidated Java-based
development environment.

Index Terms—Android, Kotlin, Java

I. INTRODUCTION

In May of 2017, Google announced the official support
for Kotlin1 on the Android platform. Kotlin is a statically-
typed programming language that runs on the Java Virtual
Machine (JVM) and fully interoperates with Java. Soon after
the announcement, the language grew in popularity, appearing
in rankings such as the 2018 and 2019 Stack Overflow Annual
Developer Surveys [6], [7]. It was also rapidly adopted in
industry by companies such as Pinterest, Uber, and Pivotal, not
only to build Android Apps but also for internal purposes [5].

1https://kotlinlang.org

Despite its rapid adoption, few studies have been conducted
so far to understand how developers are dealing with the
adoption of Kotlin [49], [51]. This motivates the need for
research in this field to assist industry and other researchers
towards a better comprehension of the technology and to guide
the development of new tools and further research. Therefore,
this work aims to further investigate this subject.

In this study, we aim to collect evidence to understand
how developers are adopting Kotlin as an official language for
Android development, their perceptions about advantages and
disadvantages of using Kotlin, and the most common problems
faced by them. We do that by a triangulation strategy [30]
which consists of a mixed-method approach to analyse data
through the mixture of qualitative and quantitative methods. Its
central premise is that the use of quantitative and qualitative
approaches in combination provides a better understanding of
research problems that either approach alone [41].

Thus, our first research question aims at identifying the most
popular problems faced by developers: RQ1. What are the
most common problems faced by Kotlin developers on Android
Platform? Since interoperability with Java is one of the
greatest benefits of Kotlin, we also investigate it: RQ2. How
are Android developers dealing with the Java-Kotlin interop-
erability? Another stated benefit of Kotlin is the functional
programming paradigm available in the language. However,
functional programming can be challenging for developers,
which leads us to our third research question: RQ3. How are
Android developers dealing with the functional paradigm in
Kotlin? The creation of a new programming language brings
the need for proper tool support. We investigate this in our
fourth research question: RQ4. How are Android developers
dealing with the development environment tools available for
Kotlin? Finally, we want to understand developers’ perceptions
about Kotlin adoption. The goal of this research question is
to investigate the user experience insights: RQ5. What is the
perception of Android developers about Kotlin adoption?

Previous works have proposed methods and criteria for
evaluating programming languages [8]–[10], however, no con-
sensus has emerged since most of them are prone to subjective
assessment. In this work, we use the concurrent triangulation
strategy [30] to mix different methods and enrich our results.
One method is based on two previous works [11], [12], and

978-1-7281-5143-4/20 c© 2020 IEEE SANER 2020, London, ON, Canada
Research Papers

Accepted for publication by IEEE. c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

206



consists of data analysis from Stack Overflow questions using
LDA [26], a statistical topic modeling technique, to automat-
ically discover the main topics discussed. The other method
uses basic qualitative strategies [13], collecting data through
seven semi-structured interviews with Android developers.

Our main findings indicate that developers seem to find the
language easy to understand and to adopt due to Java interop-
erability, null-safety guarantee, less verbosity, and functional
programming support. However, they face problems regarding
interoperability, automatic conversion from Java to Kotlin in
Android Studio IDE, and the degradation of the readability
due to the overuse of functional programming. Therefore,
companies and developers that are considering Kotlin, may
benefit from our results, as well as researchers interested on
improving techniques, tools, processes, and mechanisms to
make the best use of the language on the Android platform.

II. BACKGROUND

In this section, we briefly introduce Kotlin and its role in
Android development. We also present related work.

A. The Kotlin Programming Language & Android

Kotlin was created by JetBrains2 in 2010 to improve the
programming experience for the JVM [14]. It is a multi-
paradigm language, supporting both object-oriented and func-
tional programming paradigms, i.e., it allows developers to
combine them, as with most modern languages nowadays [17].
Its support for non-nullable types might make applications
less prone to null pointer exceptions. It also includes smart
casting, higher-order functions, and extension functions [16],
[18]. The documentation [39] also states that the language
follows the principle of pragmatic evolution, according to three
main aspects: (i) to keep the language modern over time; (ii)
to keep in constant feedback loop with the users, and (iii) to
make updating to new versions comfortable for users.

Kotlin adoption rapidly increased after its v1.0 release
in 2016. Figure 1 shows the increase on Stack Overflow3

questions containing the kotlin tag, as well as on the
number of GitHub4 repositories using Kotlin. This growth
also follows Google’s official Kotlin support announcement
in 2017. A potential reason for such popularity is the full
interoperability with Java, as both languages can be freely
mixed and migration can be gradual. Developers can also
take advantage of the Java environment using all its existing
libraries and frameworks [15], [18], while taking advantage of
modern language features [38]. Moreover, its adoption by the
Android community [19], [20] was reinforced by the Stack
Overflow developer survey, which showed Kotlin among the
most loved programming languages in 2018 and 2019 [6], [7].
We also observe the growth of Stack Overflow questions about
Android development with Kotlin. Table I indicates that Kotlin
was used in Android development even before its official
support. Afterwards, with the default support for the language

2https://www.jetbrains.com/
3https://stackoverflow.com
4https://github.com

in Android Studio—the official IDE for building Android
apps—the growth in questions has dramatically increased.

Fig. 1. Stack Overflow Questions vs. Kotlin Repositories.

TABLE I
KOTLIN WITH ANDROID YOY GROWTH IN STACK OVERFLOW.

Year Number of questionsa
2018 9,405

2017 (Official support in Android 3,071
2016 (Kotlin v1 release) 506

aThese numbers are only for Kotlin regarding Android Development

B. Related Work

Mateus and Martinez [49] investigated the degree of Kotlin
adoption on the development of open-source Android apps,
i.e., they measured the proportion of Kotlin code within those
systems. They also measured and compared the quality of
applications using Kotlin against those only using Java. Their
results show that Kotlin is present in 11.26% of applications,
and also that introducing Kotlin improves quality with regard
to code smells. They also conducted a second study to
investigate how Kotlin features have been used [50]. They
analysed different aspects, such as which features are adopted
by developers, the degree of such adoption, when they are
added into the code, and so on. By inspecting the source code
of open-source apps, they found that 15 out of 19 features are
used in half of Kotlin applications, and the most used features
are type inference, lambda, and safe call.

Coppola et al. [51] evaluated Kotlin adoption in open-
source Android apps, investigating whether it impacted in their
success. They analysed the relationship between the presence
of Kotlin code in apps and their popularity. They found that
almost 20% of the applications adopted Kotlin, and about 12%
have more Kotlin code than Java. Furthermore, apps using
Kotlin have higher popularity on average.

Banerjee et al. [37] conducted a study of various features
of both Java and Kotlin. They concluded that Kotlin is safer
and more concise than Java, but it suffers from the lack of
community support material.

207



Flauzino et al. [17] analysed 100 GitHub repositories (50
Kotlin/50 Java), with respect to five code smells. The findings
support the hypothesis that Kotlin presents fewer code smells
than Java according to descriptive statistics, except for long
parameter list. They believe that conciseness may have been
responsible for the result, as they identified that smells are
correlated with lines of code.

Schwermer [22] evaluated Kotlin and Java performance
using benchmarks from the Computer Language Benchmarks
Game suite,5 using metrics such as memory consumption,
and bytecode n-grams. The results show that Kotlin is slower
than Java for all benchmarks, and that there is an underlying
garbage collection overhead when reclaiming Kotlin objects.
Furthermore, Kotlin often produces larger bytecode than Java.

Despite the fact there are already some studies about the
adoption of Kotlin [17], [22], [37], [49]–[51], they are focused
on the quantitative aspects of the language, such as proportion
of Kotlin code or relation with code smells. In this study, our
concern is related to qualitative aspects of Kotlin’s adoption,
such as the problems faced by developers and how they
are dealing with some Kotlin programming aspects. To the
best of our knowledge, this is the first study in this regard.
Nonetheless, several studies focused on investigating Q&A
websites. Barua et al. [12] analysed the textual content of
Stack Overflow discussions using Latent Dirichlet Allocation
(LDA) [26]. This approach was also used by Rebouças et al.
[11] to assess the adoption of Swift. The latter also combined
a qualitative analysis to cross-validate the results. A similar
strategy is used in this study to evaluate Kotlin adoption.

III. METHODOLOGY

Our methodology is based on a concurrent triangulation
strategy [30]. As Easterbrook et al. state, triangulation is
motivated by the fact that often “what people say” could
be different than “what people do”, and thus, collecting data
from multiple sources helps increasing the study validity [30].
So, (1) we analyse developers’ discussions about Kotlin for
Android on Stack Overflow (Section III-A), and (2) conduct a
qualitative study by interviewing Android developers (Section
III-B). The results for RQ2, RQ3, and RQ4 were obtained
from the combination of both sources (1 and 2). To answer
RQ1 we rely on the Stack Overflow data, while RQ5 uses the
interviews. All of our steps and data are publicly available.6

A. Stack Overflow Data Analysis

The first part of this study aims to analyse Stack Overflow
with the specific goal of uncovering the main topics discussed
about Kotlin and Android. We reproduced the method from
Barua et al. [12], using LDA to analyse textual content. The
goal is to automatically discover the most frequent topics
present in developers’ discussions [26]. We used LDAvis [24],
a web-based interactive visualization of the estimated topics.

5https://benchmarksgame-team.pages.debian.net/benchmarksgame
6https://github.com/victorlaerte/kotlin-adoption-analysis

1) Acquiring and Pre-processing Data: We used the Stack-
Exchange Database7 to extract Stack Overflow questions8 re-
lated to Kotlin and Android. We retrieved questions containing
the combination of ‘kotlin’ and any Android-related tags. By
related tags we mean not only the explicit ‘android’ tag but
also platform-related tags such as: ‘fragments’, ‘recyclerview’,
‘intent’, ‘retrofit’, among 14 others. We did not consider as-
sociated answers or comments, only the questions. One might
argue that tagging is a manual process, which could incur in
incorrectly tagged questions. However, Stack Overflow has an
autocomplete feature for tagging to reduce the probability of
using a misleading tag. A total of 9,405 questions were found.

Before applying topic modeling with LDA in our corpus,
we performed pre-processing steps. (1) Removal of the content
inside the <code>, <pre> and <blockquotes> tags;
(2) HTML tag removal; (3) URL removal; (4) Stop words
and one-letter-words removal; (5) Stripping suffixes of the
remaining words using the Porter stemming algorithm [25].
For instance, after all these steps the following text:

“<p>How can I make a phone call or dial a
number in Android Kotlin? For example: Call
<code>*21*2#</code></p>&#xA;”

is reduced to:

“make phone call dial number android kotlin exampl call”

2) Topic Modeling and Visualization: Since manual inspec-
tion of 9,405 questions would require too much effort and
time, we use LDA, which is a flexible generative probabilistic
model for collections of discrete data. In our analysis, each
Stack Overflow question, i.e., composition of the title and
body, is considered as one document for LDA, so that each
word in the document can be associated with one or more
topics with a certain weight for each topic.

LDA has several parameters. The first is the number of
resulting topics. This value depends on the needed granularity,
so we chose 15 after testing values ranging from 5 to 20. The
second is hyperparameter optimization: it allows the model
to better fit the data by allowing some topics to be more
prominent than others. We used 20 after testing values between
10 and 100. Lastly, we used 1,000 as the number of sampling
iterations, which should be a trade off between execution time
and the quality of the topic model. To support the analysis, we
used LDAvis, an interactive visualization of LDA-estimated
topics [24]. It also proposes a novel measure, relevance, by
which to rank terms within topics to help on interpretation.

B. Basic Qualitative Study - Interviews

In a basic qualitative study, data can be collected through
different forms. In this study, we conducted semi-structured
interviews [13], [27] with Android developers.

7https://archive.org/details/stackexchange
8The publication date of the Stack Overflow dump is 2019-03-04.

208



TABLE II
CHARACTERISTICS OF RESEARCH PARTICIPANTS.

Id Age Role Development years
Total Android Kotlin

D1 29 Mobile Developer 6 5 3
D2 27 Mobile Engineer 6 1.5 0.75
D3 25 Android Test Analyst 5 0.66 0.66
D4 34 Mobile Leader Engineer 12 9 1
D5 30 Mobile Consultant 6 5 2
D6 28 Mobile Engineer 5 1.33 0.33
D7 38 Mobile Developer 7 7 2

1) Sample Selection: The sample selection strategy adopted
was intentional, based on the assumption that researchers
choose the most appropriate sample to learn about the in-
vestigated phenomenon [28], and convenience-based, a non-
probability sampling where the sample is taken from a group
of people easy to contact or to reach [48]. We selected a
group of individuals with the purpose of meeting specific
prescribed criteria: (1) Previous experience with Android and
Kotlin development; (2) No restrictions on the experience level
of the developer; (3) Fluency in English or Portuguese (the
languages in which researchers are fluent).

Table II presents some characteristics of the interviewees.
The participants include people with many experience levels
and different roles such as developers, engineers, testers, and
team leaders, distributed in two different countries. All of them
were selected according to the previously established criteria,
assessed from a volunteer form sent in typical communication
channels for developers: email groups, Slack and Facebook
communities, and the official Kotlin forum.Seven professionals
were interviewed, and voluntarily participated in the research.
During the interviews, the participants reported their experi-
ences with Kotlin development on Android.

2) Data Collection: We collected data through semi-
structured interviews [28] with seven professional developers.
In total, 215 minutes of interviews were recorded. Three
interviews were conducted in person, while the remaining ones
were conducted via video-conference. Three professionals
are Android Specialists, three others consider themselves as
Android developers, but also work with iOS or hybrid frame-
works. One works with Android test automation. On average,
they have 6.71 years of software development experience (SD
2.24), 4.21 years of Android development experience (SD
2.93), and 1.39 years of experience with Kotlin development
(SD 0.89). Six of them have strong experience with Java.

The interviews were grounded in our research questions. We
started by asking their background in software development.
Then, we moved to questions about Kotlin, Java-Kotlin Inter-
operability, Functional Programming, and Development Tools.
All interviews were recorded and transcribed ipsis litteris. The
interview guide is publicly available.9

3) Data Analysis: The qualitative analysis was based on
the open and axial coding. Corbin and Strauss [29] define the

9https://github.com/victorlaerte/kotlin-adoption-analysis/blob/master/
interview/INTERVIEW-SCRIPT%20(en).md

TABLE III
LDA RESULTS.

Topic Name (Mallet) Questions (%) Topic
Weighta

General Questions (14) 4,907 (52,17%) 0.36189
Java–Kotlin (13) 3,402 (36,17%) 0.23409

Classes, Objects, and
Methods/Functions (4) 2,813 (29,90%) 0.19012

Build–Compilation (10) 2,038 (21,66%) 0.13145
UI–Layout (7) 1,712 (18,20%) 0.10986

UI–Navigation (11) 1,528 (16,24%) 0.0956
Data Types and Structures (5) 1,440 (15,31%) 0.09439

Google/Android
Components (1) 1,388 (14,75%) 0.08868

Background Tasks (6) 1,373 (14,59%) 0.08586
UI–Data View Layouts (3) 1,199 (12,74%) 0.07408

Connectivity (0) 1,140 (12,12%) 0.06363
Multimedia Handling (2) 908 (9,65%) 0.05532

Data Storage (12) 867 (9,21%) 0.05353
Dependency Injection (8) 797 (8,47%) 0.04669

Testing (9) 510 (5,42%) 0.02913
aThe table is sorted by topic weight in descending order
bLDAvis column is used to identify topics in Figure 2

coding task as the process of making notations next to bits
of data that strike you as potentially relevant for answering
your research questions. The research steps were assisted by
the qualitative data analysis software, MAXQDA 18.2.0.

The open coding of the transcripts was performed with
the selection of text segments relevant to the research. The
first author conducted the coding process, with support from
the second. The third author helped to perform the review
process. Codes were generated using an iterative approach, for
each interview, and constantly compared to each other, both
within the same interview and between interviews, to identify
similarities and differences. They were then grouped into
categories (axial coding) [29]. The names of our categories
were derived from a mix of sources: (i) the researchers, (ii)
the literature, and (iii) Kotlin and Android documentation.

4) Ethics: To follow research ethics regulations, all par-
ticipants agreed with a consent form following the Research
Ethics Board constraints. All of the consents were previously
sent to the interviewers by email and the agreement is regis-
tered in the recorded interview.

IV. RESULTS

In this section, we describe the general results of the Stack
Overflow data analysis and the qualitative basic study. We then
discuss each research question.

A. General Results

Table III summarizes the 15 generated topics, after 1,000
iterations. The first column represents the topics already la-
beled, and its Mallet identifier within the parentheses. The
second column shows the number of questions inside the topic.
Questions can be associated with more than one topic. Hence,
to compute this metric we did not take into consideration
questions with weight lower than 10% for that topic. Topics
are sorted by their weight (third column).

209



TABLE IV
OPEN CODE ANALYSES.

Category Topic Codes %

Language Paradigm
and Style

Functional Programming 17 9.14
Less Verbose/More Concise 15 8.06
Pragmatic Evolution 7 3.76
Multi-Paradigm Language 6 3.23
Modern Language 5 2.69
Programming Style 5 2.69

Tools

Android Studio 15 8.06
Code Hints 8 4.30
Gradle 7 3.76
Code Convertion 6 3.23

Java Interop
Soft/Optional Migration 8 4.30
Calling Kotlin from Java 8 4.30
JVM Annotations 6 3.23
Constraints to Keep Interop 3 1.61
Constructor Overloading 3 1.61
Calling Java from Kotlin 1 0.54

Performance,
Productivity, and QA

Readability/Legibility 13 6.99
Performance/Productivity 9 4.84
QA 5 2.69

Classes and Objects

Null Safety/Optionals 9 4.84
Scope Functions 4 2.15
Companion Object 3 1.61
Extension Functions 2 1.08
Collections 1 0.54
Selead Classes 1 0.54

Documentation Stack Overflow 5 2.69
Oficial Documentation 3 1.61

Similarities between
Kotlin and Swift 11 5.91

186 100%

Figure 2 shows the LDAvis output for our topic model with
relevance adjusted to λ = 0.6 [24]. The left panel shows
topics as circles in which the area is proportional to the
relative prevalence of the topic in the corpus. When a circle
is selected, the right panel shows the most relevant terms.
As there is no selected topic in Figure 2, it only shows the
overall term frequency for all topics. Selecting a term reveals
the conditional distribution over topics for the selected term.
These interactions can be checked online.10

Table IV summarizes the interview results. The first column
represents the main categories, in which we group topics in
the second column. The third column represents the number
of codes, i.e., the number of text segments that compose each
topic. It is followed by the percentage over all codes. The last
category does not have subdivisions.

B. RQ1 - What are the most common problems faced by Kotlin
developers on Android Platform?

To answer RQ1, we rely on the Stack Overflow data
analysis. Table III summarizes the topics asked about Kotlin
and Android, named with the support of LDAvis.

Among the topics with highest weights, we have (i) General
Questions — this topic consists on general questions about
Kotlin and the Android platform, such as asking for a solution
given a stack trace log or general-purpose questions, e.g.,
“What are the advantages of Kotlin programming language?”

10https://www.victorlaerte.com/kotlin-adoption-analysis/#topic=0&
lambda=0.6&term=

(Q170). The (ii) Java–Kotlin topic contains questions on
converting Java code to Kotlin and also interoperability, e.g.,
“Can we build Kotin and Java Mix application?” (Q5187).(iii)
Classes, Objects, and Methods/Functions addresses issues
related to the structure of classes, objects, and methods in
Kotlin. It contains questions that refer to using properties,
lambdas, constructors, or static attributes, e.g., “In which sit-
uation val/var is necessary in Kotlin constructor parameter?”
(Q1624). (iv) Build–Compilation consists mainly of questions
related to Gradle and Android Studio, but also problems with
versioning, libraries, modules, that lead to compiling failures,
e.g., “Android 3.1 build gradle 4.4 error occurred configuring
project ’:app’ ” (Q4400). Finally, in the (v) UI–Layout topic,
we find questions related to layout construction, such as the
use of visual Android components and custom layout creation,
e.g., “How add TextView to View in kotlin” (Q9383).

With medium weight, (vi) UI–Navigation also consists on
UI questions, but those related to the Android navigation
mechanisms, such as fragments, activities, tab and drawer
layouts, e.g., “Android, how to replace initial fragment?”
(Q6504). In (vii) Data Types and Structures, we see questions
about basic Kotlin data types, such as strings, numbers, and
lists, e.g., “How to append 2 strings in Kotlin?” (Q6570).
The (viii) Google/Android Components topic is composed of
various questions about how Android/Google components are
behaving in different devices, such as notification services,
Google Play, Maps, and Firebase, e.g., “Android Notification
Not Showing On API 26” (QQ1159). (ix) Background Tasks
refers to multi-threaded methods on Android and brings to-
gether various questions about coroutines, and related libraries
such as RxJava, e.g., “Android ViewState using RxJava or
kotlin coroutines” (Q3583). Finally, (x) UI–Data View Lay-
outs deals specifically with components for data visualization
like RecyclerView and ListView, e.g., “How to show single
item selected in recyclerview using kotlin” (Q2808).

The topics with lowest weight are (xi) Connectivity, e.g.,
“Retrofit parse result in Kotlin” (Q3839), (xii) Multimedia
Handling, e.g., “How to save captured photos as jpg files on
android camera2” (Q5096), (xiii) Data Storage, e.g., “How
to make primary key as autoincrement for Room Persistence
lib” (Q773), (xiv) Dependency Injection, e.g., “Dagger2 +
Kotlin: lateinit property has not been initialized” (Q5412),
and (xv) Testing, e.g., “How can I run a single Android Test
using Kotlin?” (Q324).

RQ1 Summary: Although developers suffer from problems
common to all Android developers, there are specific issues
regarding code conversion, Java–Kotlin interoperability,
how Kotlin class members work, and compilation problems.

C. RQ2 - How are Android developers dealing with the Java-
Kotlin interoperability?

We study Java—Kotlin interoperability as this is one of
the main reasons given by Kotlin creators for its adoption.
Furthermore, another reason is that although the languages

210



Fig. 2. LDAvis: global topic view on the left, and the term bar charts on the right.

interoperate, they have distinct characteristics such as native
null safety support in Kotlin. Therefore, these differences
might lead to interesting results. To answer this RQ, we first
analysed the LDA results and then went deeper into the subject
by conducting interviews to collect further evidence.

According to the LDA analysis, the most related topic
is Java–Kotlin. Nonetheless, due to LDAvis visualization, it
was possible to see that the ‘java’ term is also relevant to
other three different topics, namely Classes, Objects, and
Methods/Functions, Build–Compilation, and Data Storage.

We selected and manually investigated the 100 top questions
of each topic to double check the classification. During this
analysis, we removed the Data Storage topic due to the many
number of false-positives, resulting in 300 questions in total.
After examining the title, body, and associated tags of these
questions, we ended up with questions regarding problems
related to new topics, such as discussed below. Besides those
topics, there were also general problems that we did not
address due to space constraints and over-generality.

• Optionals: In this category, we group questions regarding
problems and complaints with optionals and null pointer
exceptions crashing apps, e.g., “Non-null assert is needed
even after checking is not null in kotlin” (Q3853).

• Properties: Here we group questions on how Kotlin
represents Java getters and setters as properties, e.g.,
“Why do some Java setter methods automatically become
Kotlin properties but some don’t?” (Q2698).

• Generics: This category groups questions about using
Generics in Kotlin such as the question Q3215, where the
user did not understand the differences in declaration-site
variance for Generics between Java and Kotlin.

• Static Objects: The usage of static objects between
Kotlin and Java leads to questions such as: “How to
access static variable of java class in kotlin?” (Q6396).

• Android API and Libraries Compatibility: These are
mainly questions about using parts of Android API and
libraries that still do not provide the best support for
Kotlin, such as the use of support annotations, or the
Intent constructor (Q4171).

Regarding the interviews, all interviews pointed to interop-
erability as an advantage of using Kotlin. Some of them drew
attention to the possibility of adopting Kotlin without the need
for full codebase migration.

“There are complex things already written in
Java, so you don’t have to go out redoing it all just
because you’re writing a new app in Kotlin.” (D1)

Some of them also pointed out that to keep full interoper-
ability, there are constraints that the language has to follow.

“(...) to be interoperable with Java, there are
some deficiencies in the language that I don’t like,
something that it doesn’t support but I would like
to have it supported. Like different support for
generics, for example.” (D4)

Optionals and the difficulty to deal with nullable objects are
among the main problems reported by the interviewees.

“There’s no null safety in Java, so you can
simply call a code that has no nullability control
inside Kotlin passing something that is null and it
will crash.” (D2)

Other reported problems are related to static objects that
in Kotlin need to be declared in a companion object and

211



annotated as @JvmStatic to be called as static objects in
Java, and also overriding methods in Kotlin:

“Companion Object. I think this is ugly and
could have been abstracted for the developer.” (D1)

RQ2 Summary: Despite experiencing problems with some
of the language features, developers seem to consider
interoperability as a great benefit of adopting Kotlin.

D. RQ3 - How are Android developers dealing with the
functional paradigm in Kotlin?

Functional programming is one of the benefits that the
language creators argue for its adoption [21]. Adopting a
functional programming language might be challenging even
for experienced programmers, as shown by Chambers et al.
[31]. Hence, the need to understand how developers deal with
the new possibilities that the paradigm brings to the platform.

To answer this question, we proceeded similarly to RQ2.
We selected 100 questions from each topic with terms related
to the functional paradigm according to LDAvis. The topics
were Classes, Objects, and Methods/Functions, General
Questions, and Background Tasks. During the analysis of
these questions, we removed the Background Tasks topic due
to the high number of false-positive questions, resulting in
200 questions in total. After the manual process, we ended up
with questions regarding functional programming problems as
detailed below, as well as general problems.

• Higher-order Functions/Lambdas: This category con-
tains questions about using lambdas and higher order
functions, e.g., “How to pass a function as parameter
in kotlin - Android” (Q6181).

• Closures: Questions regarding the scope of enclosing
functions, e.g., “How to make ‘this’ a reference of
Listener instead of the Activity in Kotlin?” (Q3432).

• Scope Functions: This category considers special func-
tions provided by the standard library, such as let, run,
with, apply, and also, whose sole purpose is to
execute a block of code within the context of an object
[18]. For instance, “difference between kotlin also, apply,
let, use, takeIf and takeUnless in Kotlin” (Q2698).

• First Class Functions: These are questions about using
function as first class citizens, i.e., assignee functions to
variables or storing them in data structures, e.g., (Q1585).

During the open coding process, we coded 17 segments
from the interviews as related to Functional Programming.
Five of the interviewees consider Kotlin as fully supporting
the functional paradigm, two of them partially or did not
responded to these questions due to lack of experience in the
subject. Some respondents mentioned functional programming
as a factor that enhances the flexibility and modernity of
language.

“I think Kotlin supports functional programming.
Everything from the collections is very functional
programming oriented. Lambdas, functions as first-
class citizens, having functions apart from classes,

all those things I think that help to program in a
functional programming way very easily” (D4)

When asked about the problems associated with the func-
tional paradigm, two interviewees mentioned difficulties to un-
derstand scope functions, and one mentioned several problems
using inline functions.

“I remember having to look for several problems
I found compiling with inline functions. We were
using inline functions a lot, because of the reified
generics and I had to search for solutions to several
problems with it.” (D4)

Despite the fact that the interviewees consider the functional
paradigm as helpful in code readability, they also state that
overusing the paradigm might result in the opposite effect.

“Lambdas are things that make our day to day
easier for coding, but can also make it difficult to
read.” (D7)

RQ3 Summary: Although developers consider the func-
tional paradigm as a factor that enhances the flexibility
and modernity of the language, they are facing problems
regarding the usage of lambdas and closures. They also
consider that its overuse can decrease code readability.

E. RQ4 - How are Android developers dealing with the
development environment tools available for Kotlin?

We study development tools because, as mentioned by
Breslav [14], creating a new programming language is more
than creating a compiler. A whole ecosystem of supporting
tools needs to be created, to foster adoption. Hence, we
believe that by assessing the tools available for a programming
language, we are also partially assessing how Kotlin adoption
is being perceived by the developers [36].

To answer this RQ we selected 100 questions from each
of the Build–Compilation and Java–Kotlin topics. Relevant
terms for such topics include ‘gradle’ and ‘studio’. We also
considered the relevance of other terms that refer to tools, such
as ‘plugin’, ‘librari’, ‘proguard’ and ‘kapt’. After analysing the
200 questions, we categorized the problems as follows.

• Android Studio code converter: This category groups
questions on problems with the Android Studio code
converter feature, that automatically translates Java into
Kotlin. Most questions report compilation failures after
conversion, e.g., “Converting Java file to Kotlin now it
won’t compile - Internal compiler error” (Q8770).

• Error After Upgrade: This category refers to problems
that appear after upgrading development tools, e.g., “An-
droid unable to build project after updating kotlin runtime
to 1.2.31” (Q4689).

• Version Conflicts: This category consists of versioning
conflicts, e.g., “Warning “Kotlin plugin version is not the
same as library version” (but it is!)” (Q4784).

• Kotlin Setup: Here we group questions about diffi-
culties reported by developers on setting up Kotlin in
their projects, e.g., “I am unable to configure Kotlin in

212



my android studio. getting error Error: Unable to find
method‘BaseVariantData.getOutputs()...;’.” (Q1002).

• kapt & databinding: The last category contains ques-
tions on problems with the Kotlin Annotation Processor
(kapt) and Databinding Library. Both terms presented
high relevance in LDAvis and manual analysis.

During the open coding process, we coded 36 segments
as related to development tools. The majority of the reported
problems relates to version upgrades of such tools. The re-
sponses point out that even minor version upgrades can cause
problems that might lead their projects to stop compiling.

“I didn’t have such a good, fluid experience
[with Android Studio]. I think we’ve seen the project
break sometimes because of updates.” (D1)

Some also report that fixing such issues is difficult because
it is hard to identify the root of the problem.

“I think it wasn’t an easy thing to understand,
especially when you have multiple projects with
multiple dependencies... sometimes it’s not so clear
what’s wrong. After some time suffering you can
come up with some trick or set of steps that facilitate
how to solve some problems.” (D1)

Regarding Android Studio, the interviewees think there are
many features that help with development in Kotlin, such as
the automatic code conversion feature.

“I know that someone already solved that prob-
lem in Java so I can copy it, paste the code and see
it converted to Kotlin. This is very cool.” (D3)

However, they point out that there is still a lot to improve
on automatic code conversion and code suggestions.

“...the code translation between Java code can
be improved to generate code that is more idiomatic.
It’s working, but it’s creating code that it’s not
following the best practices of Kotlin.” (D4)

RQ4 Summary: Developers face many problems with
development tools, specially regarding the Android Studio
code converter, Gradle, and new library versions. Intervie-
wees report that even minor upgrades can lead to problems.

F. RQ5 - What is the perception of Android developers about
Kotlin adoption?

The goal of this RQ is to investigate the developers’
perception about Kotlin adoption in Android development
through the analysis of the interviews. In this section, we
address the most relevant topics identified in the open coding
process (Table IV) which were not previously analysed. In
this RQ, we decided not to address topics within the Tools,
Interoperability, and Classes and Objects categories as they
were already addressed by previous questions.

In the Language Paradigm and Style (55) category, we
removed the Functional Programming (17) topic from the
analysis, since RQ3 already discusses it. We analysed the
remaining topics: Less Verbose/More Concise (15), Pragmatic

Evolution (7), Multi-Paradigm Language (6), Modern Lan-
guage (5), and Programming Style (5). As a result it was
possible to identify that interviewees consider Kotlin more
concise and less verbose than Java.

“I think it’s very concise, not as verbose as Java,
more elegant. I don’t have to specify everything that
takes a lot of time. I think the conciseness of the
language is the thing I like the most.” (D4)

Developers points out that Kotlin is in constant evolution,
and sometimes it is even hard to follow it:

“Kotlin is constantly bringing several improve-
ments, sometimes it is even difficult to follow.” (D5)

They also consider that multi-paradigm support makes the
language more flexible, which they believe is a characteristic
of modern languages, as well as the new style of programming
that Kotlin brings to the Android platform.

“...You can define functions receiving other func-
tions, which shows that it was designed such that you
can program in a much simpler way than in Java
[...] Since it is a language that already was born
with functional paradigm it makes simpler to, for
example, define higher order functions, or extension
functions, or... everything is much simpler.” (D7)

The Performance, Productivity and QA (27) category was
subdivided into the following topics: Readability/Legibility
(13), Performance/Productivity (9), and QA (5). It was possi-
ble to identify that developers consider the language to be more
idiomatic, making it easier to read code, and improving indi-
vidual performance. They also point out that such readability
may deteriorate with the overuse of the functional paradigm.

“In my opinion, it is much easier to read a Kotlin
code than a Java code for example.” (D3)

“Kotlin brings many functions that improve read-
ability. For example, aggregation functions that help
you a lot... iterating over a list sometimes is not so
clear in Java, you have too much code that decreases
understanding. Kotlin performs well in this aspect,
producing very good code output. Sometimes it is
also the opposite when you use too much of Kotlin’s
resources you can end up with code that is not so
clear, for example, using too many ‘let’ or ‘also’ you
can end up with hard to understand code.” (D2)

All interviewees consider that the Kotlin language leads to
an improvement in the quality of the developed code, pointing
to null safety as the main factor.

“I think that what helps developers most in An-
droid is the null support, dealing with null references
in an easy way. Also the support for lambdas, all
those mini features that you can use in Android, help
in code quality, especially the null support.” (D4)

The Documentation (8) category, with the Stack Overflow
(5) and Official documentation (3) topics, show us that some
interviewees believe that the official documentation still lacks
specific information for Android Platform.

213



“I think what’s missing for Kotlin is some very
specific documentation for the platform.” (D5)

They also point out the importance of Stack Overflow as a
source of knowledge.

“...nowadays every developer uses Stack Over-
flow. It is a very large community to ask questions
and solve specific problems that perhaps the docu-
mentation can not address. Kotlin has a very good,
robust documentation, but it will not be able to cover
all use cases and needs. Stack Overflow ends up
being a tool, a very fast parallel platform for you
to solve a problem. And typically, answers include
examples in a very simple and practical way.” (D6)

The last category, Similarities between Kotlin and Swift
(11), could only be identified due to the semi-structured
interview method we followed. We did not identify additional
topics underlying this category. Four interviewees brought to
light similarities between Kotlin and Swift (used for iOS
programming). Some of them report that, as they had ex-
perience with Swift, the learning curve for adopting Kotlin
was reduced, due to the similarity between languages. Another
interviewee pointed that since his company needed multidis-
ciplinary teams, they decided to adopt Kotlin because people
with experience in Swift could also work well with Kotlin.

“It was more natural to me because it was very
similar to Swift.” (D1)

RQ5 Summary: Developers consider Kotlin a modern
language, which helps to improve productivity and quality.
The similarity with Swift also helps. They claim that
documentation still lacks Android-specific material.

V. DISCUSSIONS

This section discusses the results, with an initial overall
assessment, followed by comparison to the existing literature,
discussion of implications, and threats to validity.

A. Overall Assessment

Developers consider Kotlin a modern language with many
features that facilitate its adoption. Being able to use a new
language without having to undergo an abrupt migration is
an advantage pointed out by all interviewees. In fact, none of
them cited a case where their code base was fully migrated
to Kotlin. In most cases they were partially migrated, or only
new features were written in Kotlin. Some of them also stated
that being able to use the entire Java API also helps. We
found many Stack Overflow questions on problems using null
variables from Java, which lacks nullability control, which was
also reported by the interviewed developers.

The multi-paradigm support is reported by respondents as a
feature that brings more flexibility to development. However,
they also warn that overuse of the functional paradigm can
make the code more complex and difficult to understand. This
problem also appears in the Stack Overflow questions, where
it is possible to find questions regarding scope context within

closures and the use of higher-order functions. Additionally,
many Stack Overflow questions pertain to problems in the
toolchain, specially with upgrading, as well as hard to under-
stand or unhelpful error messages.

According to the interviewees, Kotlin contributes to improv-
ing productivity and performance because it is a modern lan-
guage, less verbose, and improves readability when compared
to Java (only when the functional paradigm is not overused). It
also brings more quality to the code produced. They also point
out that a different mindset, or programming style, is required
in order to use Kotlin’s features in the best way possible.

Regarding documentation, developers believe that much
can still be done to improve the support material of the
language and point out Stack Overflow as a platform of utmost
importance to the developer community. Finally, developers
report that similarities between Kotlin and Swift help on its
adoption. One interviewee states that adopting it can greatly
benefit multidisciplinary teams, especially in a startup envi-
ronment, where, according to him, due to scarce resources,
many developers have to work on both Android and iOS.

B. Literature Discussion

In this section, we compare our results with works men-
tioned in Sections I and II to identify similarities and dif-
ferences. According to JetBrains [15], [16] and Google [19],
the reason for Kotlin’s popularity is the flexibility, modernity,
and the possibility to fully interoperate with Java. Our results
provide evidence to this being the main factor for its adoption,
followed by flexibility and modernity. Nonetheless, we also
observe that although interoperability is a facilitator, it also
might lead developers to face problems, being the second topic
with more questions and reported by interviewees.

JetBrains [15], [16], and Google [19] also state that smart
casting, higher-order functions, and extension functions allow
developers to focus on making code more readable and less
verbose. This statement is partially supported by this research
because despite developers considering Kotlin as a language
that improves readability, they believe that overusing func-
tional capacities and operators such as the elvis operator, can
cause the opposite effect, making code difficult to read and
understand. This might be explained by Chambers et al. [31]
who conducted a long-term observational study to understand
how experienced imperative programmers performed in an
introductory graduate course on functional programming. They
reported that students commonly encounter several conceptual
difficulties when learning functional languages, specially im-
plementing recursive functions, and nested operations. Other
studies also present similar results where functional pro-
gramming demonstrate several challenges to learners such as
understanding the concept of higher-order functions [32], the
type of functional expressions [33], and the evaluation of
iterative and recursive functions [34], [35].

Shafirov [21] affirms in the official Kotlin Blog that devel-
opers do not need to install any extra plugin or worry about
compatibility since JetBrains and Google improved Kotlin sup-
port in the Android Studio IDE after its official announcement

214



as an Android supported language. However, developers are
still facing problems regarding version compatibility of their
development tools, specially for Android Studio and Gradle.

In a large-scale empirical study with GitHub repositories
involving more than 6 million lines of code, Flauzino et al.
[17] identified that Kotlin code usually had fewer code smells
than Java code. The same finding is presented by Banerjee
et al. [37]. Our study found similar results where developers
believe that Kotlin improves code quality, especially because
of the null-safety guarantee, scope functions, and lambdas.

Although Rebouças et al. [11] studied Swift, the similarity
between both languages came to light throughout our work.
By comparing their findings with ours, we identify that in
both studies the interviewees find languages easy to adopt.
Another related finding is that optional variables seem to cause
problems in both languages. Developers also report problems
with tools, which can be explained by the tools being recent.
Unlike their work, we did not find major problems with the
compiler, besides compilation time.

C. Implications

As a general implication of this work, we provide an empir-
ical evidence for companies, researchers, and developers who
want to make a preliminary analysis before adopting Kotlin.
For those who have already adopted the Kotlin language, it
might be relevant for improving techniques, tools, processes,
and mechanisms to make the best use of the language on the
Android platform.

Regarding RQ1, companies and developers can know in
advance what kind of problems they will face if they decide
to adopt Kotlin. With the support of RQ2 they can also
understand the advantages and disadvantages of interoperating
Java and Kotlin, so they might be better equipped to choose
between a partial or full Java—Kotlin migration. In RQ3 we
bring a better understanding of the functional paradigm, so
researchers can use these results for studying if the usage of
Kotlin in programming disciplines can help the understanding
of the functional paradigm. Toolmakers can take advantage
of the findings presented in RQ4 to create new tools and
improve existing ones. Finally, in RQ5 companies, developers,
and researchers can understand how Kotlin adoption has been
perceived by the developers, taking into account productivity,
readability, and code quality to create processes and mecha-
nisms to maximize gains and mitigate losses.

D. Threats to Validity

The first threat to validity is related to the number of LDA
topics chosen. Although there is no “right” solution, we ran
several tests to verify the number of topics that best fit our
study. Even though, we had to label the topic 2 (Java–Kotlin)
with a more generic name due to the diversity of questions
that the topic presented, especially regarding interoperability
and code conversion, manual or automatic. Despite of that,
we believe this is not a limitation of our work due to the
fact that we approached the topic in detail in other research
questions, RQ2 and RQ4. This can also be explained by the

fact that the most difficult part to migrate the codebase from
Java to Kotlin is how to deal with null variables from Java.
Secondly, due to the high number of questions, we manually
analysed only 700 questions. However, this number exceeds
the minimum of 564 required to achieve a 95% confidence
level with 4% of error margin for the population of 9,405
questions analysed in this study [47]. We also used LDAvis
analyses11 to support and corroborate our manual analyses.
We also face as a threat the fact that not all of the Stack
Overflow questions regard problems, but some of them are just
questions asking for best practices, implementation examples
or performance benchmarks. However, in our manual analysis,
it was observed that the vast majority of questions of this type
appear in the topic General Questions, while other topics are
more heterogeneous. Finally, our interview script might not
have covered all possible questions. However, the interviews
were designed as semi-structured. Hence, this allowed us to
cover other kind of questions during the interview that were
not listed in the script.

VI. CONCLUSION

In this study, we investigated how developers are dealing
with the recent adoption of Kotlin as an official language
for the Android Platform by performing an in-depth analysis
of Stack Overflow questions related to Kotlin and Android,
and interviewing seven developers. Our results indicate that
developers seem to find the language easy to understand and
to adopt. They believe that the use of Kotlin can improve
code quality, readability, and productivity. Among the main
factors are: Java interoperability, the null safety guarantee,
the less verbosity, the lambdas and higher-order functions,
and the good support in the IDE. However, even with all the
advantages that Kotlin has brought to the Android platform,
developers continue to face many problems using it, which
includes the use of null variables and optionals within Kotlin,
the problems with the toolset, the degradation of readability
with the overuse of the functional paradigm, and the inter-
operation with Java. Finally, the main finding of this study
is that developers consider that Kotlin adoption brings many
advantages to the Android platform, specially in the aspect
of adopting a more modern language while maintaining the
consolidated Java-based development environment.

We believe this study serves as a starting point for under-
standing Kotlin adoption, and more similar studies are needed
to offer proper developer decisions support.

ACKNOWLEDGMENT

We acknowledge support from FACEPE (BCT-0229-1.03/19
and APQ-0570-1.03/14), CAPES (88887.333966/2019-00),
and CNPq (409335/2016-9). This research was partially
funded by INES 2.0, FACEPE grants PRONEX APQ-
0388-1.03/14 and APQ-0399-1.03/17, and CNPq grant
465614/2014-0. We also thank Tempest Security Intelligence
for the research grant support for attending SANER 2020.

11https://www.victorlaerte.com/kotlin-adoption-analysis/#topic=0&
lambda=0.6&term=

215



REFERENCES

[1] “Global Mobile Market Report - Free Version”. Newzoo, 2018.
Available: https://resources.newzoo.com/hubfs/Reports/Newzoo 2018
Global Mobile Market Report Free.pdf.

[2] “Use Java 8 language features”. Android Developers, 2017. Available:
https://developer.android.com/studio/write/java8-support.

[3] “Compiling with Jack”. Android Open Source Project, 2017. Available:
https://source.android.com/setup/build/jack.

[4] J. Titus. “Developer Keynote”. Google I/O, 2017. Available:
https://events.google.com/io2017/schedule/?section=may-17&sid=
keynote2 .

[5] “Kotlin Language Official Website”. Available: https://kotlinlang.org/.
[6] “Developer Survey Results”. Stack Overflow, 2018. Available: https://

insights.stackoverflow.com/survey/2018/.
[7] “Developer Survey Results”. Stack Overflow, 2018. Available: https://

insights.stackoverflow.com/survey/2019/.
[8] N. Wirth. “Programming languages: What to demand and how to assess

them.”. Symposium on Software Engineering, Belfast, 1976.
[9] S. S. Chandra, K. Chandra. “A Comparison of Java and C#”. J. Comput.

Small Coll., 20(3):238254, 2005.
[10] F. Schmager, N. Cameron and J. Noble. “GoHotDraw: Evaluating the

Go programming language with design patterns”. In PLATEAU, pages
10:110:6, 2010.

[11] M. Rebouças, G. Pinto, F. Ebert, W. Torres, A. Serebrenik, and F.
Castor. “An Empirical Study on the Usage of the Swift Programming
Language”. 2016. 634-638. 10.1109/SANER.2016.66.

[12] A. Barua, S. W. Thomas, and A. E. Hassan. “What are developers talking
about? an analysis of topics and trends in Stack Overflow”. Empirical
Softw. Engg., 19(3):619654, June 2014

[13] S. Merriam. “B.Qualitative Research: A Guide To Design And Imple-
mentation”. San Francisco, Calif. Jossey-Bass, 2009.

[14] A. Breslav. “History of Kotlin”. Kotlin for Java Developers - Coursera.
Available: https://www.coursera.org/lecture/kotlin-for-java-developers/
history-of-kotlin-K8pZr.

[15] “JVM Languages Report extended interview with Kotlin
creator Andrey Breslav”. RebelLabs, 2013. Available: hyphens
https://jrebel.com/rebellabs/jvm-languages-report-extended-interview-
with-kotlin-creator-andrey-breslav/hyperref.

[16] A. Breslav. “Kotlin 1.0 Released: Pragmatic Language for JVM and An-
droid”. Kotlin Blog, 2016. Available: https://blog.jetbrains.com/kotlin/
2016/02/kotlin-1-0-released-pragmatic-language-for-jvm-and-android/.

[17] M. Flauzino, J. Verssimo, R. Terra, E. Cirilo, V. H. S. Durelli, and
R. S. Durelli. “Are you still smelling it?: A comparative study be-
tween Java and Kotlin language”. 2018. In Proceedings of the VII
Brazilian Symposium on Software Components, Architectures, and
Reuse (SBCARS ’18). ACM, New York, NY, USA, 23-32. DOI:
https://doi.org/10.1145/3267183.3267186.

[18] “Kotlin Docs”. Kotlin Official Documentation. Available: https://
kotlinlang.org/docs/reference/

[19] M. Cleron. “Android Announces Support for Kotlin”. Android Devel-
opers Blog, 2017. Available: https://android-developers.googleblog.com/
2017/05/android-announces-support-for-kotlin.html

[20] “Develop Android apps with Kotlin”. Android Developers. Available:
https://developer.android.com/kotlin/index.html

[21] M. Shafirov. “Kotlin on Android. Now official”. Kotlin
Blog, 2017. Available: https://blog.jetbrains.com/kotlin/2017/05/
kotlin-on-android-now-official/

[22] P. Schwermer. “Performance Evaluation of Kotlin and Java on Android
Runtime”. Dissertation, 2018.

[23] Y. Shah, J. Shah, and K. Kansara. “Code obfuscating a Kotlin-based
App with Proguard”. 2018. 1-5. 10.1109/ICAECC.2018.8479507.

[24] C. Sievert, K. E. Shirley “LDAvis: A method for visualizing
and interpreting topics. Proceedings of the Workshop on Interac-
tive Language Learning, Visualization, and Interfaces”. 2014. 63-70.
10.1109/ICAECC.2018.8479507.

[25] M. F. Porter. ”An algorithm for suffix stripping”. 1980. Program, Vol.
14 Issue: 3, pp.130-137, https://doi.org/10.1108/eb046814

[26] D. M. Blei, A. Y. Ng, and M. I. Jordan. “Latent dirichlet allocation.”.
2003. J. Mach. Learn. Res. 3 (March 2003), 993-1022.

[27] D. I. K. Sjøberg, T. Dybå, B. C. D. Anda, and J. E. Hannay. “Building
Theories in Software Engineering”. 2008. Springer London, London, pp.
312336. https://doi.org/10.1007/978-1-84800-044-5 12

[28] P. Runeson and M. Höst. “Guidelines for conducting and reporting
case study research in software engineering”. 2008. Empirical Soft-
ware Engineering 14, 2 (19 Dec 2008), 131. https://doi.org/10.1007/
s10664-008-9102-8

[29] J. Corbin, and A. Strauss. “Basics of qualitative research: Techniques and
procedures for developing grounded theory”. 2007. (3rd ed.). Thousand
Oaks, CA: Sage.

[30] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. “Selecting
Empirical Methods for Software Engineering Research”. 2008. Springer
London, London, pp. 285-311.

[31] C. Chambers, S. Sheng, D. Le, and C. Scaffidi. “The Function, and Dys-
function, of Information Sources in Learning Functional Programming”.
2012. J. Comput. Sci. Coll. 28, 1 (October 2012), 220-226.

[32] M. Chakravarty, and G. Keller. “The risks and benefits of teaching
purely functional programming in first year”. 2004. Journal of Functional
Programming, 14 (1), 113-123.

[33] S. Joosten, van den Berg, K. G van der Hoeven. “Teaching functional
programming to first-year students”. 1993. Journal of Functional Pro-
gramming, 3 (1), 49- 65.

[34] A. Ebrahimi “Novice programmer errors: Language constructs and plan
composition”. 1994 Intl. Journal of Human Computer Studies, 41 (4),
457-480.

[35] J. Segal “Empirical studies of functional programming learners evaluat-
ing recursive functions”. 1994. Instructional Science, 22 (5), 385-411.

[36] E. Murphy-Hill, S. Markstrum, and C. Anslow. “Evaluation and usability
of programming languages and tools (PLATEAU)”. 2010. 265-266.
10.1145/1869542.1869605.

[37] M. Banerjee, S. Bose, A. Kundu, and M. Mukherjee. “A Comparative
Study: Java Vs Kotlin Programming in Android Application Devel-
opment.” 2018. International Journal of Advanced Research in Com-
puter Science, 9(3), 41-45. doi:https://doi.org/10.26483/ijarcs.v9i3.5978
10.1145/1869542.1869605.

[38] R. K. Panchal, and, A. K. Patel. “A comparative study: Java Vs Kotlin
Programming in Android”. 2017. International Journal of Innovative
Trends in Engineering Research, September 2017, vol 2 Issue 9, pp
4 10.

[39] “Comparison to Java Programming Language”. Kotlin Official
Documentation. Available: https://kotlinlang.org/docs/reference/
comparison-to-java.html

[40] “Android KTX”. Android Official Documentation. Available: https:
//developer.android.com/kotlin/ktx

[41] J. Creswell. “Research Design Qualitative, Quantitative and Mixed-
Methods Approaches”. 2003. Thousand Oaks, CA: Sage.

[42] J. Creswell, and V. Plano Clark. “Designing and Conducting Mixed-
Methods Research”. 2007. Thousand Oaks, CA: Sage.

[43] A. Atif, D. Richards, and A. Bilgin. “A Student Retention Model: Em-
pirical, Theoretical and Pragmatic Considerations”. 2013. Proceedings
of the 24th Australasian Conference on Information Systems.

[44] J. Morse. “Principles of Mixed-Methods and Multi-Method Research”.
2003. In Tashakkori, A. and Teddlie, C. (Eds.), Handbook of Mixed-
Methods in Social and Behavioural Research, pp 189-208. Thousand,
Oaks, CA: Sage.

[45] V. R. Basili. “Software Modeling and Measurement: The
Goal/Question/Metric Paradigm”. 1992. College Park, MD, USA.

[46] “Statista dossier about Smartphones”. Statista. 2019. Available: https:
//www.statista.com/study/10490/smartphones-statista-dossier/.

[47] “Sample Size Calculator”. Creative Research Systems. 2012. Available:
https://www.surveysystem.com/sscalc.htm.

[48] Saumure, K. and Given, Lisa M. “The SAGE Encyclopedia of Qual-
itative Research Methods”. 2008. SAGE Publications, Inc. Thou-
sand Oaks. 10.4135/9781412963909. Available: http://sk.sagepub.com/
reference/research.

[49] Góis Mateus, B and Martinez, M. “An empirical study on quality of
Android applications written in Kotlin language”. Empir Software Eng
(2019). https://doi.org/10.1007/s10664-019-09727-4.

[50] Góis Mateus, B and Martinez, M. “On the adoption, usage and evolution
of Kotlin Features on Android development”. The Computing Research
Repository (CoRR), 2019. http://arxiv.org/abs/1907.09003.

[51] Riccardo Coppola, Luca Ardito, and Marco Torchiano. 2019. Character-
izing the transition to Kotlin of Android apps: a study on F-Droid, Play
Store, and GitHub. In Proceedings of the 3rd ACM SIGSOFT Interna-
tional Workshop on App Market Analytics (WAMA 2019). ACM, New
York, NY, USA, 8-14. DOI: https://doi.org/10.1145/3340496.3342759.

216


