
On the Adoption of a TODO Bot on GitHub: A Preliminary Study

Hamid Mohayeji
h.mohayeji.nasrabadi@tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

Felipe Ebert
f.ebert@tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

Eric Arts
e.m.a.arts@student.tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

Eleni Constantinou
e.constantinou@tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

Alexander Serebrenik
a.serebrenik@tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

ABSTRACT

Bots support different software maintenance and evolution activi-
ties, such as code review or executing tests. Recently, several bots
have been proposed to help developers to keep track of postponed
activities, expressed by means of TODO comments: e.g., TODO Bot
automatically creates a GitHub issue when a TODO comment is
added to a repository, increasing visibility of TODO comments. In
this work, we perform a preliminary evaluation of the impact of the
TODO Bot on software development practice. We conjecture that
the introduction of the TODO Bot would facilitate keeping track of
the TODO comments, and hence encourage developers to use more
TODO comments in their code changes.

To evaluate this conjecture, we analyze all the 2,208 repositories
which have at least one GitHub issue created by the TODO Bot.
Firstly, we investigate to what extent the bot is being used and
describe the repositories using the bot. We observe that the ma-
jority (54%) of the repositories which adopted the TODO Bot are
new, i.e., were created within less than one month of first issue
created by the bot, and from those, more than 60% have the issue
created within three days. We observe a statistically significant
increase in the number of the TODO comments after the adoption
of the bot, however with a small effect size. Our results suggest that
the adoption of the TODO Bot encourages developers to introduce
TODO comments rendering the postponed decisions more visible.
Nevertheless, it does not speed up the process of addressing TODO
comments or corresponding GitHub issues.

KEYWORDS

TODO, bots, technical debt, code comments

ACM Reference Format:

Hamid Mohayeji, Felipe Ebert, Eric Arts, Eleni Constantinou, and Alexander
Serebrenik. 2022. On the Adoption of a TODO Bot on GitHub: A Preliminary
Study. In Fourth International Workshop on Bots in Software Engineering

(BotSE 2022), May 9, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3528228.3528408

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BotSE 2022, May 9, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9333-1/22/05. . . $15.00
https://doi.org/10.1145/3528228.3528408

1 INTRODUCTION

Software bots are used in software development to create a more
efficient software developmentworkflow [1]. In this regard, GitHub
has recently introduced GitHub Apps, (user-created) bots that can
interact with GitHub API. Such apps are becoming quite popular,
e.g., the Coveralls1 is a bot to support the code review process
which has more than 15k installations.

TODO Bot, created in September 2017, is one of such apps [4].
It is a GitHub App that automatically creates an issue if a push
to the repository’s master branch contains the word “TODO” (or
another pre-configured keyword). It also places a comment in the
Pull Request containing a commit with one of these pre-configured
keywords. Bots can as well be associated with self-admitted tech-
nical debt (SATD) [10], the non-optimal or incomplete solutions
during the software development process. [10] showed that mining
code comments looking for patterns such as TODO comments is
useful for detecting technical debts. Having this association in mind,
the TODO Bot can be expected to help managing technical debt by
increasing the visibility of TODO comments.

To begin with, we want to investigate the extent that the TODO
Bot is being used on GitHub. Thus, we formulate our first research
question:

RQ1. To what extent is TODO Bot being used in GitHub?

We identified 2,208 GitHub repositories using the TODO Bot
belonging to 1,033 repository owners. We observed that the TODO
Bot is more popular on recently created repositories than in older
ones, and amongst those recent repositories, the majority have
issues created by the bot with the first three days.

Furthermore, we also aim at understanding the characteristics of
the projects using the TODO Bot in terms of popularity measure by
the number of stars, forks, watchers, commits, and also the number
of TODO issues created by the bot. This helps us to comprehend
the adoption level of TODO Bot with respect to the popularity or
activity of repositories. As such, we formulate our second research
question:

RQ2.What are the characteristics of repositories on which TODO
Bot operates?

We found that repositories using the TODO Bot usually have few
stars, forks, and watchers. The TODO Bot has been mostly working
on repositories with at most a few hundred commits.

1https://github.com/marketplace/coveralls

https://doi.org/10.1145/3528228.3528408
https://doi.org/10.1145/3528228.3528408

BotSE 2022, May 9, 2022, Pittsburgh, PA, USA Mohayeji et al.

Finally, we aim at verifying whether the adoption of the TODO
Bot affects the way developers use and address TODO comments.
As such, we formulate our third research question:

RQ3.How does the adoption of the TODO Bot affect the introduction
of TODO comments and dealing with them?

The results of this preliminary study show that, the TODO Bot
adoption is affected by the frequency developers are adding TODO
comments in their commits. In the set of repositories created more
than one month before and after the first issue created by the bot,
there is a statistically significant increase in the number of TODO
comments after the adoption of the bot. These results confirm
our expectation, i.e., we expect that such a bot would encourage
developers in the management of (self admitted) technical debt as
the creation of GitHub issues would increase the visibility and
management of the TODO comments. While this paradigm shifts
from TODO comments to GitHub issues is fruitful in increasing the
visibility of technical dues, our experiment reveals that the process
of resolving those issues is not generally faster.

2 RELATEDWORK

TODO comments are a specific type of task annotation which devel-
opers can use to manage their programming tasks. Storey et al.[14]
conducted an empirical study on how task annotations in source
code are used by developers and teams. They found that TODO
comments are used for a wide range of tasks, such as splitting up
a large task in smaller subtasks, or denoting edge cases so that
handling their implementation can be deferred to a later point in
time. Nie et al.[9] developed a Java framework called TrigIt that
developers can use to write trigger-action TODO comments using
Java code. These trigger-action TODO comments are then automat-
ically resolved (by executing the provided action) when a certain
condition (i.e., the trigger) is met. A different approach was taken
by Shridhara [13], who created a tool to check the up-to-date status
of TODO comments.

However, without ways to manage TODO comments, they can
still be lost track of. For instance, Storey et al.[14] also reported
several TODO comments that were not revisited and left in the
codebase of one of the projects they analyzed. This can lead to
technical debt [3] later on in the project, more specifically, to so
called self-admitted technical debt (SATD) [10]. SATD refers to
situations where developers are aware the actual implementation is
not optimal and they use this task annotation to alert the inadequacy
of the solution, and TODO comments is one way of expressing
SATD. SATD has been extensively investigated in the last few years.
Maldonado et al.[8] investigated how much SATD is removed and
who removes it. Their results showed that most of the SATD is
removed also by the same person who introduced it. Iammarino et

al.[5] investigated the relationship between refactoring and SATD
removal. They found that refactoring is more likely to co-occur
with the SATD removal than with other commits.

In this paper, we conduct a preliminary analysis of a bot which
aims at helping developers manage TODO comments by increasing
their visibility, i.e., by creating GitHub issues. We argue this study
is complementary to the others as we aim at understanding at what
degree TODO Bot is adopted by repository owners and how effective
it is in addressing technical debts expressed in the form of TODO

comments. There are other GitHub Apps that provide a similar
functionality as TODO Bot. We, however, decided to specifically
focus on the TODO Bot in this study as it seemed to be the most
popular variant when looking at i) the number of stars, forks, and
watchers of the bot repository and ii) the search results on the
GitHub marketplace and Google when searching for “todo” and
“github todo”, respectively.

3 METHODOLOGY

To answer our questions, we need to obtain collections of: (1) the
issues created by the TODO Bot, along with the repositories related
to those issues and (2) TODO comments that were created before
TODO Bot was introduced to a repository.

In order to answer RQ1 and RQ2, we use the GitHub search
API to identify issues created by the TODO Bot and its repositories
names, i.e., we consider only public repositories with at least one
issue created by the bot. Moreover, we fetch additional repository
information (such as the number stars, number of forks, etc.) using
GitHub’s standard API. To answerRQ3, we need to identify TODO
comments created before TODO Bot was introduced to a repository.
The code that was used is publicly available.2

We use CLI-tool provided by the TODO Bot to check whether,
given a repository and a commit SHA, if it would create an issue for
that commit. However, the generated issues contained duplicates,
as TODO Bot was unable to verify whether an issue already existed
(e.g., when a file is renamed). These duplicates were removed by
keeping the commit date of the earliest duplicate commit. Further-
more, some TODO comments already had related issues and were
therefore identified before. Each issue that was created by the TODO
Bot relates to a commit, which must have been created before the
issue was created. As such, the commit that caused the creation of
the first TODO issue was also found in this search and discarded.
To study statistical difference between the number of TODO com-
ments before and after the adoption of the bot, firstly we check for
normality with Shapiro-Wilk test [11], then we use the t-test [15],
otherwise we use the non-parametric Wilcoxon test [2]. Finally, to
compare the lifespan of the issues with the TODO comments, we
run another experiment, in which for each repository, we leveraged
Pydriller [12] library to extract the time difference between adding
and removing TODO comments in the source code before the bot
adoption, as well as calculating the same lifespan for issues based on
their creation and termination dates. We clone the repositories and
find commits touching TODO comments using regular expression
“∧\s*(#|--|<!--|//|/*+)+\s*(@todo|todo):?\s*(?P<text>.*)". Regarding
issues, we calculated the elapsed time between the creation and
closing date, provided by the GitHub API. Subsequently, we used
Survival Analysis [7] on both TODO comments and issues to gain
insight into the expected duration for each of those to be resolved
by the developers.

4 RESULTS

The process of identifying the GitHub issues created by the TODO
Bot resulted in 11,837 issues, belonging to 2,208 unique reposito-
ries.3 The usage of the CLI-tool to identify the TODO comments

2https://figshare.com/s/d530438dd83035662a8c
3It was performed on September 6, 2020.

https://figshare.com/s/d530438dd83035662a8c

On the Adoption of a TODO Bot on GitHub: A Preliminary Study BotSE 2022, May 9, 2022, Pittsburgh, PA, USA

before the adoption of the TODO Bot returned a total of 34,948
TODO comments, which then were reduced to 20,809 after remov-
ing duplicates, belonging to 872 unique repositories. The following
sections present the results of the RQs.

RQ1: To what extent is TODO Bot being used in

GitHub?

We found 2,208 repositories which use TODO Bot, that are owned by
1,033 GitHub users. The fact that owners use TODO Bot in multiple
of their repositories is not surprising given the ease of installing a
GitHub app across their repositories with a single click. Developers
seem also to be quickly adopting the TODO Bot as it is more popular
on recently created repositories (54%), i.e., where the creation date
is less than one month before the first issue created by the bot. Also,
more than 60% of the repositories have TODO Bot issues created
with three days after the creation of the project.

RQ2: What are the characteristics of repositories

on which TODO Bot operates?
We report the characteristics of repositories on which TODO Bot op-
erates regarding the number of stars, forks, and watchers , commits,
and TODO issues.

Stars, Forks, and Watchers: Our analysis reveals that 1,990
out of 2,208 repositories have less than 25 stars, forks and watchers.
Moreover, around half of the repositories have no stars or forks at all.
Similarly, more than half of the repositories only have one watcher.
Given that GitHub provides functionality to automatically watch
a self-created repository, it seems reasonable that most repositories
have one watcher as opposed to zero watchers.

Commits: More than half of the repositories have less than 50
commits. Figure 1 presents the number of repositories having a
certain number of commits; repositories with at least 2K commits
are excluded from Figure 1 for readability, but they only account
for 60 out of 2,208 repositories. The fact that TODO Bot mostly
operates on small repositories is not surprising as according to
Kalliamvakou et al. [6], more than 90% of GitHub projects have less
than 50 commits.

0 1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

0

200

400

600

800

1000

Number of Commits

N
u
m

b
er

 o
f

R
ep

os
it
or

ie
s

Figure 1: Number of Commits per repository.

TODO issues: As depicted in Figure 2, only few repositories have
more than 50 TODO issues. Figure 3 shows the total number of

25 50 75 100 125 150 175 200 225 250 275 300 325

1

2

5

10

2

5

100

2

5

1000

Number of Issues

N
u
m

b
er

 o
f

R
ep

os
it
or

ie
s

(l
og

)

Figure 2: Number of TODO issues per repository.

newly created TODO issues across all repositories per month. From
October 2017 to November 2018, TODO Bot only created around
50 issues each month. This changed in the period from November
2018 to June 2019, where the bot usage steadily grew over time. In
the period thereafter (until September 2020), this growth halted.
Note that this data was fetched on 6 September 2020, meaning that
the last bin (September 2020 to October 2020) contains only data
for six days. This means that it took TODO Bot around a year after
its release before its usage actually started to grow, and that this
growth continued for around half a year.

Jan 2018 Jul 2018 Jan 2019 Jul 2019 Jan 2020 Jul 2020
0

100

200

300

400

500

600

700

Issue Creation Date

N
ew

 T
O

D
O

-i
ss

u
es

Figure 3: Number of TODO issues per month.

RQ3: How does the adoption of the TODO Bot
affect the introduction of TODO comments and

dealing with them?

As we established earlier, most repositories only had few TODO
comments that were identified by TODO Bot. For the sake of com-
parison, Figure 4 illustrates the amount of repositories that have
created a certain number TODO comments before TODO Bot was
introduced in their repository. Repositories with one or no commits
before the bot was introduced are not included in this graph, as
they cannot have TODO comments without issues.

While we can see a similar distribution as for TODO comments
introduced after TODO Bot was adopted (recall that each TODO

BotSE 2022, May 9, 2022, Pittsburgh, PA, USA Mohayeji et al.

0 25 50 75 100 125 150 175 200 225 250 275 300 325

1

2

5

10

2

5

100

2

5

1000

Number of 'TODO'-comments before todo[bot] was adopted

N
u
m

b
er

 o
f

R
ep

os
it
or

ie
s

(l
og

)

Figure 4: Number of TODO comments before TODO Bot was

adopted.

comment has an associated issue), this can be because of two rea-
sons. Firstly, repositories might not have commits where TODO Bot
was not already active (and hence, the bot identified all TODO com-
ments that were made throughout the entire repository history).
Alternatively, repositories might have made commits, but those
commits did not contain TODO comments.

To investigate whether the TODO Bot affected the way developers
use TODO comments, we analyzed the period of one month before
and after the first issue created by the bot. We identified a total
of 591 repositories which had at least one commit with a TODO
comment one month before the first issue created by the bot, and
also with issues created by the bot one month after its first issue.
As the data is not normally distributed (𝑝 < 2.2 × 10−16 for both
distributions) we perform a paired Wilcoxon test [2]; the 𝑝-value
of 0.0192 indicates that the number of issues after the bot adoption
is statistical higher then before, but with a small effect size (0.0979).

As our final assessment, we conducted another study, aiming to
understand whether the adoption of the TODO Bot encourages de-
velopers to address TODO comments faster. We obtain the lifespan
of TODO comments and compare them with the lifespan of issues.
We consider a TODO comment introduced in a commit resolved
if there is a subsequent commit in which the TODO comment is
deleted. The time difference between these two commits is con-
sidered as the TODO comment’s lifespan. We extract 6,364 TODO
comments from the source code and calculate the time difference
between the commits adding and removing TODO comments. Fig-
ure 5 shows the result of Survival Analysis on those comments and
also the issues. The results show that for periods of over 5 weeks,
the probability of not being addressed is lower for TODO comments
compared to issues. Also, the Wilcoxon [2] test results in a p-value
of 0.004 and an effect size of 0.15, which is not significant. The exact
reasons for this behavior need to be investigated in future work,
however, we can argue that the lifespan of TODO comments and
issues are heavily dependent on some factors like the complexity of
their objectives, which we did not analyze in this article. Neverthe-
less, the TODO Bot remains successful in increasing the visibility of
technical debts.

0 25 50 75 100 125 150 175 200
Time (Weeks)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Pr
ob

ab
ilit

y
of

 N
ot

 B
ei

ng
 R

es
ol

ve
d

Survival Curve for Issues and Todos
Issues
Todos

Figure 5: The probability of TODO comments and issues not

being resolved after a certain amount of time

5 THREATS TO VALIDITY

Internal Validity. When fetching issues that TODO Bot would
have created before it was introduced, only the keywords “todo”
and “@todo” (case insensitive) are considered, meaning that TODO
comments introduced by custom-defined keywords are not iden-
tified. Given that “TODO” is the most commonly used type of
task-annotation by a large margin [14], we do not expect our re-
sults to be invalidated. The TODO Bot also creates Pull Request
comments, which have not been regarded in this research, meaning
the repositories which fix all TODO comments before merging are
not considered. Besides, the issues created by the TODO Bot at the
beginning of its adoption might have been for the sole purpose of
experimenting with the bot’s functionalities, which has not been
considered in this work.

External Validity. Only open-source projects on GitHub and
TODO Bot were studied. Thus, we cannot claim our results hold for
different bots with the similar functionality nor to non open-source
projects.

6 CONCLUSION

In this study, we investigate the characteristics of the projects which
adopted the TODO Bot in order to support the management of tech-
nical debt. We also investigated whether the adoption of TODO Bot
encourages the use of TODO comments by developers. We observed
the TODO Bot more popular among more recently created projects.
Furthermore, the initial analysis showed the number of TODO com-
ments increased after the bot adoption. Although TODO Bot seems
to be encouraging developers to use more TODO comments, it does
not make the process of addressing them faster.

This work provides the basis for future research on TODO Bot.
To find out effects of TODO Bot one can perform a deeper analysis
on the lifespan of TODO comments and issues considering the
complexity of their objectives. The reasons why the owners of
major repositories are not interested in such bots as TODO Bot can
also be investigated.

On the Adoption of a TODO Bot on GitHub: A Preliminary Study BotSE 2022, May 9, 2022, Pittsburgh, PA, USA

REFERENCES

[1] Ahmad Abdellatif, Khaled Badran, and Emad Shihab. [n. d.]. A Repository of
Research Articles on Software Bots. http://papers.botse.org.

[2] David F. Bauer. 1972. Constructing Confidence Sets Using Rank Statistics. J.
Amer. Statist. Assoc. 67, 339 (1972), 687–690. http://www.jstor.org/stable/2284469

[3] Ward Cunningham. 1992. The WyCash Portfolio Management System. In Adden-

dum to the Proceedings on Object-Oriented Programming Systems, Languages,

and Applications (Addendum) (Vancouver, British Columbia, Canada) (OOP-
SLA ’92). Association for Computing Machinery, New York, NY, USA, 29–30.
https://doi.org/10.1145/157709.157715

[4] Jason Etcovitch. [n. d.]. todo. https://github.com/apps/todo
[5] Martina Iammarino, Fiorella Zampetti, Lerina Aversano, and Massimiliano Di

Penta. 2021. An empirical study on the co-occurrence between refactoring actions
and Self-Admitted Technical Debt removal. JSS 178 (2021), 110976.

[6] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub.
In MSR. ACM, 92–101.

[7] David G. Kleinbaum and Mitchel Klein. 2005. Survival analysis: A self-learning

text. Springer New York.
[8] Everton Da S. Maldonado, Rabe Abdalkareem, Emad Shihab, and Alexander

Serebrenik. 2017. An Empirical Study on the Removal of Self-Admitted Technical

Debt. In ICSME. 238–248.
[9] Pengyu Nie, Rishabh Rai, Junyi Jessy Li, Sarfraz Khurshid, Raymond J. Mooney,

and Milos Gligoric. 2019. A Framework for Writing Trigger-Action Todo Com-
ments in Executable Format. In ESEC/FSE. ACM, 385–396.

[10] Aniket Potdar and Emad Shihab. 2014. An Exploratory Study on Self-Admitted
Technical Debt. In ICSME. 91–100.

[11] J. P. Royston. 1982. An Extension of Shapiro and Wilk’s W Test for Normality to
Large Samples. Journal of the Royal Statistical Society. Series C (Applied Statistics)

31, 2 (1982), 115–124.
[12] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. PyDriller: Python

framework for mining software repositories. In Proceedings of the 2018 26th ACM

Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering - ESEC/FSE 2018. ACM Press, New York,
New York, USA, 908–911. https://doi.org/10.1145/3236024.3264598

[13] Giriprasad Sridhara. 2016. Automatically Detecting the Up-To-Date Status of
ToDo Comments in Java Programs. In India Software Engineering Conference.
ACM, 16–25.

[14] Margaret-Anne Storey, Jody Ryall, R. Ian Bull, Del Myers, and Janice Singer. 2008.
TODO or to Bug: Exploring How Task Annotations Play a Role in the Work
Practices of Software Developers. In ICSE. ACM, 251–260.

[15] Student. 1908. The probable error of a mean. Biometrika (1908), 1–25.

http://www.jstor.org/stable/2284469
https://doi.org/10.1145/157709.157715
https://github.com/apps/todo
https://doi.org/10.1145/3236024.3264598

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	5 Threats to Validity
	6 Conclusion
	References

