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ABSTRACT
Information Flow Control (IFC) tools are a common way
to analyze source code with the goal to find confidentiality
or integrity violations for sensitive information. Therefore,
to correctly protect such information (e.g., passwords), it
is important to choose the most suitable tool for each tar-
get software system. In this context, we evaluate precision,
recall, and accuracy for three open-source IFC tools for Java-
written systems. We also check whether these tools are useful
to protect sensitive information of real systems. First, we
execute these tools against test cases of the SecuriBench
Micro benchmark built for this purpose. Then, we run three
selected IFC tools (JOANA, PIDGIN, and Flowdroid) to
assess whether they are able to detect violations for rules
we define considering each real system. Our results show
that JOANA and PIDGIN overcome FlowDroid regarding
precision, recall, and accuracy. Furthermore, the execution
of JOANA and PIDGIN allow us to find eight confidentiality
and integrity violations for the target systems. We registered
these violations as issues on those projects. Our results also
demonstrate that JOANA is faster than PIDGIN. At last, we
provide some discussion for developers on which IFC tool fits
better when dealing with sensitive information in software
systems.
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1 INTRODUCTION
Many systems handle sensitive information such as user
passwords or location. Therefore, developers should care
about protecting this information confidentiality and integrity.
There are a number of different mechanisms to try to achieve
this goal such as static analysis [12, 13, 23, 30–32, 37] or man-
ual code review [20]. Albeit necessary in a number of cases,
manual code review is time-consuming and expensive [28].
On the other hand, Information Flow Control (IFC) analysis
tools mitigate these drawbacks [14, 22, 26].

IFC tools track how information propagates through the
program during execution [24]. They are concerned with two
properties: information confidentiality and information in-
tegrity [24]. Integrity guarantees that unauthorized parties
like methods do not influence sensitive information [23]. Con-
fidentiality guarantees that sensitive information does not
leak to unauthorized parties [22].

In this context, it is important to assess state of the art
IFC tools regarding their recall, precision, and accuracy. The
results of such assessment could bring knowledge that would
help to choose the most suitable (and available) tool for a
given purpose. So, in this work we perform an experiment to
compare three IFC tools: JOANA [22], FlowDroid [14], and
PIDGIN [26]. To obtain the recall, precision, and accuracy,
we run these tools against a well-known benchmark, the
SecuriBench Micro [27], which provides many test cases that
are useful to exercise IFC tools.

Our results show that JOANA and PIDGIN have similar
results concerning recall, precision, and accuracy for 137
existing confidentiality or integrity violations provided by
SecuriBench Micro. JOANA presents the highest recall and
it is capable to detect the highest number of existing issues
whereas PIDGIN presents higher precision and accuracy. On
the other hand, FlowDroid presents the lowest issues detected
as well as the lowest recall.

Since JOANA and PIDGIN present higher precision and
recall, we use these tools to evaluate whether they can protect
sensitive information for real systems. Therefore, we select
three open-source projects written in Java that handle sen-
sitive information. They are called Blojsom [5], Lutece [29],
and ScribeJava [35]. We define five constraints for each one,
which contains confidentiality and integrity rules (e.g., user
password cannot be written to log files). After running the
experiment, we conclude that JOANA and PIDGIN are able
to detect confidentiality and integrity violations for these real
systems.

https://doi.org/10.1145/3483899.3483901
https://doi.org/10.1145/3483899.3483901


SBCARS ’21, September 27-October 1, 2021, Joinville, Brazil Gabrielle Amorim, Rodrigo Andrade, and Felipe Ebert

Additionally, we also measure the execution time that
JOANA and PIDGIN takes to perform the analysis for each
defined constraint. We conclude that, despite of JOANA pre-
senting lower precision and accuracy, it is approximately 150
times faster than PIDGIN when running their IFC analysis
for the selected systems.

In summary, this work shares the following contributions:
∙ An assessment regarding precision, recall, and accuracy

for three state of the art IFC tools;
∙ An additional evaluation to bring evidence that two of

these IFC tools can indeed protect sensitive information
for real systems;

∙ A performance study about two IFC tools.
The remainder of the paper is structured as follows. Sec-

tion 2 shows the main concepts that are necessary for a better
understanding of this work. Section 3 discusses our research
questions, target systems, constraints, and experiment. In
Section 4, we explain our assessment regarding IFC tools
precision, recall, and accuracy as well as their results consid-
ering constraints and real systems. Section 5 discusses the
threats to validity of our assessment whereas Section 6 ex-
plains related work. At last, Section 7 presents our concluding
remarks.

2 BACKGROUND
In this section, we present the main concepts necessary for a
better understanding of this work. In Section 2.1, we explain
two key concepts we use in this research: Confidentiality
and Integrity. Section 2.2 discusses Information Flow Control
analysis.

2.1 Confidentiality and Integrity
Confidentiality demands that sensitive information does not
leak to potentially dangerous methods [23]. This way, only
authorized methods should access such information. For ex-
ample, in Listing 1, the sensitive information is the user pass-
word whereas the leaking method is log(). In this context,
we would like to avoid printing user password throughout log
files.

Listing 1: Confidentiality violation
1 v o i d a u t h e n t i c a t e ( User u ) {
2 S t r i n g password = u . getPassword ( ) ;
3 . . .
4 LOGGER. l o g ( " User " + l o g i n + " with pwd "
5 + password ) ;
6 . . .
7 }

In this work, we approach confidentiality by means of
information flow. For the code snippet above, we can detect
sensitive information violation by identifying that there is an
information flow from password to the log() method.

Integrity demands that unauthorized methods do not in-
fluence sensitive information [23]. In other words, integrity
assures information is not changed. For instance, Listing 2
illustrates a violation of sensitive information integrity.

The malicious code in line 3 changes the user password
so that an attacker can easily access the account of any
user. In this example, the unauthorized method is the call to

readInput() in line 3 whereas the sensitive computation is
the saveUser() call in line 5.

Listing 2: Integrity violation
1 v o i d updateUser ( User u ) {
2 . . .
3 u . setPwd ( readInput ( ) ) ; // malicious code
4 S t r i n g password = u . getPwd ( ) ;
5 c . saveUser ( u . getLogin ( ) , encrypt ( password ) ) ;
6 }

At last, confidentiality and integrity are dual to each
other [4]. Thus, to guarantee both, we need to check for
information flows from one source code location to another
and vice-versa.

2.2 Information Flow Control analysis
Information Flow Control (IFC) is concerned with the flow
of information inside a system. It tracks how information
propagates through the program during execution. Thus, one
important IFC goal is to try to assure that the program
handles the information properly [24]. According to Hammer
et al., IFC analysis has two main tasks [23]:

∙ Guarantee confidentiality of information;
∙ Guarantee integrity of information.

In general, IFC analysis determines whether there is a po-
tential information flow from one point to another in program
execution [23]. Therefore, it could be useful to detect whether
there is a possible flow from a statement that holds a sensitive
information to an unauthorized method. In other words, we
can use IFC analysis to enforce sensitive information confi-
dentiality. For example, in Listing 1, we can automatically
detect that there is an information flow from password to
log().

Additionally, we can use IFC analysis to detect whether
there is a possible flow from an unauthorized method to a
sensitive information, which regards to integrity. For instance,
in Listing 2, we can automatically detect that there is a flow
from setPwd to the user password.

In this context, there are a number of IFC tools en-
compassing different approaches to achieve those two main
tasks [12, 14, 18, 23, 26, 30, 33, 34, 37]. These tools vary re-
garding their underlying mechanisms to deliver Information
Flow Control. For example, JOANA [21] builds its IFC analy-
sis using a graph structure named System Dependence Graph
(SDG) [25]. Statements are nodes whereas edges represent
flows of data or control from one node to another. JOANA
allows us to manually set which source code statement repre-
sents sensitive information and which statement represents
unauthorized methods (i.e., it could be either a method call
or its instructions). Despite of also using SDGs, PIDGIN [26]
provides a different way for us to specify sensitive informa-
tion. As explained in Section 3.2, we need to write policies
in its own policy language. In opposition to JOANA and
PIDGIN, Flowdroid [14] automatically determines sensitive
information for Android applications (e.g., Mobile IMEI).

In this work, we focus on these three tools: JOANA, Flow-
droid, and PIDGIN. We introduce them in Section 3.2.
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3 RESEARCH METHOD
In this section, we explain our research questions and metrics
(Section 3.1), the selected IFC tools (Section 3.2), the target
systems (Section 3.3), our experiment (Section 3.5), and
execution environment (Section 3.6).
3.1 Goal-Question-Metric
To better drive our work, we adopt the Goal-Question-Metric
(GQM) approach [17]. Our goal is to compare three state-of-
the-art Information Flow Control tools regarding precision,
recall, and accuracy. We also have the goal to check how the
best two tools perform to detect sensitive information flow to
unauthorized methods in real systems. Table 1 summarizes
our GQM approach.

Table 1: Our GQM approach

Goal
Purpose Evaluate IFC tools regarding
Issue precision, recall, and accuracy
Object for benchmark and real projects
Viewpoint from an IFC tool user viewpoint
Questions and Metrics
RQ1- Which selected IFC tool -Precision (PRE)
performs better regarding -Recall (REC)
precision, recall, and accuracy? -Accuracy (ACC)
RQ2- The selected IFC tools can -Number of
detect flows from sensitive infor- violations found (NVF)
mation to unauthorized methods
and vice-versa for real systems?
RQ2.1- Which selected IFC tool is -Execution time (ET)
faster to find information flows?

As showed in Table 1, we define two major research ques-
tions and a minor one. RQ1 is important to bring evidence of
which IFC tool performs better by means of precision, recall,
and accuracy. This answer could guide other developers and
researchers to choose the most suitable tool for their purpose.
This way, we run the selected tools against a well-known
benchmark commonly used for this goal. To answer RQ1, we
use three metrics: precision, recall, and accuracy.

Precision can be defined as the number of true-positives
divided by the sum of true-positives and false-positives. For
example, if the IFC tool flawlessly identifies two unauthorized
information flows as well as one nonexistent flow, the precision
would be 66%.

Recall can be defined as the number of true-positives
divided by the sum of true-positives and false-negatives. For
example, if the tool correctly detects all the unauthorized
information flows for a given test case, the recall is 100%.

Accuracy is defined as the sum of true-positives and true-
negatives divided by the sum of true-positives, false-positives,
false-negatives, and true-negatives. For instance, in case we
correctly detect six unauthorized information flows plus two
nonexistent flows, the accuracy would be 75%.

Moreover, our goal to define RQ2 is to bring evidence that
the selected IFC tools can, indeed, find sensitive information
flowing to unauthorized methods considering real systems,
which encompasses confidentiality. In addition, it is our goal
to bring evidence that these tools can also detect flows on
the opposite direction, that is, from unauthorized methods

to sensitive information, which encompasses integrity. In
this context, we define scenarios for these systems (e.g., log
method cannot access password information). In case the
tool detects a flow for such scenarios, we count it as a viola-
tion. Therefore, the Number of violations found metric is
increased by one.

At last, we define the minor research question RQ2.1. The
answer to this question also helps to determine which IFC
tool is more suitable for a given context. For example, one
tool could be very precise, however its execution time turns
it unfeasible for certain kind of systems [23]. Thus, we use
the execution time metric.
3.2 Selected IFC tools
IFC tools automatically analyze source code in order to find
potential information flows. In general, we can specify Sources
and Sinks, which allow developers to determine program parts
that hold sensitive information and source code location
where it cannot flow (e.g., unauthorized methods) [3]. To
perform our comparative study, we select three open-source
IFC tools: JOANA [21], FlowDroid [14], and PIDGIN [26].

JOANA is a framework for performing IFC analysis on Java
programs. It supports static analysis of Java systems in order
to find integrity and confidentiality violations [22]. JOANA
provides an annotation mechanism so that developers can
manually define Sources and Sinks (e.g., sensitive information
and unauthorized methods). To execute its IFC analysis, we
must provide a program entry-point, such as a main method.
It also provides a user-friendly interface in which we could
manually select Sources, Sinks, and entry-point.

Our second selected IFC tool is named FlowDroid. It
computes data flows in Android apps and Java programs [14].
For Android apps, FlowDroid has a predefined list of Sources
and Sinks that represent sensitive information and leaking
points (e.g., unauthorized methods). On the other hand, for
Java programs, we can customize the list of Sources and Sinks
as well as the entry-point.

Our third selected tool is called PIDGIN. It is an IFC
analysis tool that allows us detecting whether an information
flow exists. Differently from JOANA, it provides a policy
language for specification of Sources and Sinks. In this con-
text, we define queries in this policy language and execute
PIDGIN. Therefore, this tool determines whether there is
a flow between the specified Sources and Sinks (e.g., user
location field and send email method).

Finally, it is not our goal to investigate the differences
between the tools’ implementation in this work. However, we
briefly explain it when needed for better understanding.
3.3 Target systems
To answer RQ1, we select the SecuriBench Micro [27]. It
consists of 122 test cases written in Java, which are grouped
into 12 distinct groups: Aliasing, Arrays, Basic, Collections,
Data Structures, Factories, Inter, Pred, Reflection, Sanitizers,
Session, and Strong Update. Other authors have also used
it [12–15, 26] to test their approaches. This way, we use the
SecuriBench Micro to identify the cases that IFC tools find
and miss information flows, also following the metrics used
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by literature [14, 15, 26], we consider precision, recall, and
accuracy to measure the performance of the tools.

Additionally, to answer RQ2 and RQ2.1, by using conve-
nience sampling, we selected three open-source Java-written
projects: Blojsom [5], Lutece [29], and ScribeJava [35]. Our
decision was based on the fact that those projects are mature
enough to contain data points of interest.

Blojsom is a blog application that uses the Simple Logging
Facade for Java (SLF4J) [19] external library, which is useful
to log operations throughout the source code. These logging
operations are known to be a potentially dangerous point
where unauthorized methods have access to sensitive informa-
tion [30] as specified in the Common Weakness Enumeration
(CWE) [8] and in The Open Web Application Security Project
(OWASP) [20]. Thus, often, we should not log sensitive in-
formation [3]. Indeed, if we ignore this problem, we might
compromise such information confidentiality and integrity.
Furthermore, the Blojsom project has 4,419 commits and
nearly 7000 lines of Java code. It was developed for ten
years, until 2013. However, its source code is still available
for download.

Our second selected system is named Lutece. It is an open-
source web portal that allows users to create websites or
intranets. It also handles sensitive information such as user
passwords. Thereby, it is interesting to check whether there
are flows from this information to unauthorized methods.
Lutece has 3,718 commits and 16 open pull requests. This
project is still active.

Our last selected system is called ScribeJava. It is a simple
authentication (OAuth) library for Java programs. It is de-
signed to provide authentication functionalities which means
ScribeJava handles sensitive information such as user API key
and secret. It has 1.145 commits and 13 open pull requests.
Like Lutece, this project is still active and is supported by
several developers, who submit their code contributions to
its repository on GitHub.

3.4 Constraints
To answer RQ2 and RQ2.1, we define rules regarding sensitive
information and unauthorized methods. Also, we consider
that a violation occurs when these rules are not obeyed. For
each target system, we specify five constraints that contain
rules as follows.

Blojsom
C1 The method responsible for authorizing users to exe-

cute certain operations on the system must not have
writing access on the user’s password. However, it can
execute reading operations;

C2 The method responsible for checking the users’ per-
missions must not execute writing operations related
to user password. However, it can execute reading op-
erations;

C3 The method responsible for sending e-mails to users
must not execute writing operation with the sender’s
e-mail and the recipient’s e-mail(s);

C4 The method responsible for getting detailed users’ in-
formation must not execute writing operations related

to the user’s password. However, it can execute reading
operations;

C5 Methods responsible for accessing log files must not
execute writing and reading operations utilizing user
passwords.

Lutece
C6 The method responsible for getting users’ passwords

must not execute writing operations on passwords. How-
ever, it can execute reading operations;

C7 The method responsible for validating users’ pass-
words must not execute writing operations on pass-
words. However, it can execute reading operations;

C8 The method responsible for user password decryp-
tion must not execute writing operations on passwords.
However, it can execute reading operations;

C9 Methods that execute queries in the database using
the password must not execute operations writing on
passwords. However, it can execute reading operations;

C10 Methods that perform update operations in the data-
base using the password must not execute writing op-
erations on passwords. However, it can execute reading
operations.

ScribeJava
C11 The method responsible for getting signature request

must not execute writing operations on secret tokens.
However, it can execute reading operations;

C12 The method responsible for adding the API signa-
ture to the request must not execute writing operations
on secret tokens. However, it can execute reading oper-
ations;

C13 The method responsible for writing information into
the log files must not execute reading and writing
operations on secret tokens;

C14 The method responsible for adding the parameters
into requests must not execute writing operations on
secret tokens. However, it can execute reading opera-
tion;

C15 The method responsible for token encryption must
not execute writing operations on secret tokens. How-
ever, it can execute reading operation.

Since our goal is to assess existing IFC tools, we do not con-
sider existing policy languages [3, 6, 7, 30–32, 37] to write our
constraints. This would demand changing these tools’ imple-
mentation [3], which could introduce bias to our experiment.
Next, we explain our strategy to run our experiment.

3.5 Experiment
In this work, we divide our experiment execution into nine
steps. We explain each one below.

(1) Searching for IFC tools. This step regards the process to
find Information Flow Control analysis tools. We limit
our search by following these criteria: (i) tools that can
analyze systems written in Java, (ii) open-source tools,
(iii) feasibility to build the tool’s source code, and (iv)
tools that do not demand system source code changes.
We identified eight available tools. Five of them were
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rejected in this process. First, ANDROMEDA [13]
and TAJ [12] do not meet the (ii) criteria. Second,
Jif [32], Jeeves [37], and Joe-E [30] do not meet the (iv)
criteria. Finally, we selected three IFC tools: JOANA,
FlowDroid, and PIDGIN;

(2) Searching for benchmark projects. The goal of this step
is to find a benchmark project to test the selected IFC
tools. Thus, it should provide test cases that are useful
to measure precision, recall, and accuracy. During this
process, we notice that a number of related work [12–
15, 26] use the SecuriBench Micro [27] for this purpose.
Thereby, we also select this benchmark project to exe-
cute our analysis. It implements, on purpose, a number
of confidentiality and integrity violations that we could
use to check whether IFC tools are able to detect;

(3) Running IFC tools against the benchmark project. For
each test case provided by SecuriBench Micro, we man-
ually assign Sources and Sinks. To check confidentiality,
the former represents sensitive information whereas the
latter represents unauthorized methods. On the other
hand, to check integrity, we assign them in the opposite
way since they are dual [4]. Then, we run our three
selected IFC tools for each test case. Most test cases in
SecuriBench Micro have sensitive information integrity
and confidentiality violations;

(4) Analyzing first results. In this step, we manually count
the number of true-positives and negatives as well as
false-positives and negatives for each tool and test
case. Then, we use these data to measure precision,
recall, and accuracy (Section 3.1). At last, we manually
analyze these measures to determine which IFC tool
performs best;

(5) Selecting real systems. To better evaluate the IFC tools,
we select real systems that handle sensitive information
and present potentially unauthorized method. Basically,
these systems must be written in Java and open-source.
We manually review their source code to check whether
they meet our needs. Therefore, we select three projects:
Blojsom [5], Lutece [29], and ScribeJava [35];

(6) Defining constraints. We manually analyze each se-
lected systems to understand their sensitive informa-
tion and potentially dangerous methods. Thereby, we
define five constraints for each selected system. Each
constraint contains sensitive data confidentiality and/or
integrity rules. For instance, we might define that a par-
ticular field that contains sensitive information cannot
flow to a method that exposes it publicly;

(7) Adapting constraints. For JOANA, we use its graphical
interface to assign which statement is Source or Sink
for each constraint. For example, we color code state-
ments as green to represent Sources whereas red ones
represent Sinks. On the other hand, we write PIDGIN
policy for each of our constraints;

(8) Running IFC tools against real systems. We execute
the IFC tools for the target systems and the specified
constraints;

(9) Analyzing final results. In this step, we collect the num-
ber of confidentiality and integrity violations found
by the IFC tools. Thus, we compare them by means
of performance and violations found for each defined
constraint. Finally, we manually reviewed the systems’
source-code to confirm the information flows detected
by the tools.

3.6 Execution environment
We perform our study in a laptop equipped with an Intel Core
i7 8th generation processor. It has 16GB of RAM memory
and a 128GB Solid State Drive. The operation system we
use is Linux Ubuntu version 20.4. Moreover, we adopt Java
7 to run our analysis. Lastly, we consider JOANA released
on February of 2020, FlowDroid 2.5.1, and PIDGIN released
on November of 2015.

4 RESULTS AND DISCUSSION
In this section, we explain the results we obtain after running
our experiment. First, we answer RQ1 in Section 4.1. Then,
we discuss our answers to RQ2 and RQ2.1 in Section 4.2.

4.1 IFC tools precision, recall, and accuracy
Table 2 illustrates the results we obtain when running JOANA,
FlowDroid, and PIDGIN against the SecuriBench Micro. The
Test Case Group column shows different cases for testing IFC
tools. Each test case group has a number of information flows
to be detected. For example, concerning Reflection, JOANA
correctly identifies three flows out of four. Therefore, it misses
one flow, which introduces a false-negative. Consequently,
JOANA has a 75% recall and accuracy for this test case
group.

Furthermore, JOANA is able to detect the existing infor-
mation flow present in 10 groups, which means 100% recall
for them. On the other hand, it misses two flows for Reflec-
tion and Inter. This drawback happens due to the resulting
System Dependence Graph [25] not including the nodes and
edges necessary to reach the information flow. The precision
and accuracy vary from group to group. For instance, JOANA
presents 50% precision and accuracy for the Factories group
because it also detects false-positives. Nonetheless, JOANA
allows additional optimizations that improve analysis preci-
sion, which leads to a reduction of false-positives [22] with
the cost of performance loss. Since Flowdroid and PIDGIN
do not allow these optimizations, we do not use them in
JOANA. Otherwise, we could present biased results.

FlowDroid was able to achieve 100% recall for only two
test case groups: Arrays and Collections. It happens due to
the high number of false-negatives. In particular, FlowDroid
was not able to detect any flow for Session and Strong Update
because the test cases these groups present are related to a
dependency that FlowDroid’s main library does not support.
Unfortunately, FlowDroid does not support predicates, sani-
tizers, and reflection [14]. Thus, we could not evaluate it for
these three groups.

Our results differ from Artz et al. [14] mainly for Basic,
Factories, and Session test case groups. This happens due to
two reasons. First, this benchmark has been updated with new
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Table 2: IFC tools results for SecuriBench Micro
JOANA FlowDroid PIDGIN

Test Case Group Detected REC PRE ACC Detected REC PRE ACC Detected REC PRE ACC
Aliasing 12/12 100% 85% 87% 10/12 83% 100% 85% 12/12 100% 100% 100%
Arrays 9/9 100% 60% 62% 9/9 100% 64% 62% 9/9 100% 64% 62%
Basic 61/61 100% 91% 91% 30/61 51% 96% 53% 61/61 100% 100% 100%
Collections 14/14 100% 66% 68% 14/14 100% 93% 94% 14/14 100% 73% 79%
Data Structures 5/5 100% 62% 62% 4/5 80% 80% 75% 5/5 100% 100% 100%
Factories 3/3 100% 50% 50% 1/3 33% 100% 66% 3/3 100% 100% 100%
Inter 15/16 93% 57% 60% 15/16 93% 100% 96% 16/16 100% 100% 100%
Predicates 5/5 100% 62% 66% - - - - 5/5 100% 71% 77%
Reflection 3/4 75% 100% 75% - - - - 1/4 25% 100% 25%
Sanitizers 4/4 100% 44% 44% - - - - 3/4 75% 100% 88%
Session 3/3 100% 75% 75% 0/3 0% 0% 25% 3/3 100% 75% 75%
Strong Update 1/1 100% 20% 20% 0/1 0% 0% 20% 1/1 100% 33% 60%
Total 135/137 97% 64% 63% 83/124 60% 70% 64% 133/137 91% 84% 80%

and different test cases since these researchers evaluated it.
Second, we contacted FlowDroid’s developers to discuss our
results and they reported to us that FlowDroid’s main library
has been updated since the last analysis. So, oddly the new
one does not have the dependencies required by SecuriBench
Micro test cases, which leads to Flowdroid missing these test
case groups.

Like JOANA, PIDGIN is able to detect the information
flow present in 10 out of 12 groups. Therefore, this tool does
not achieve 100% recall only for Reflection and Sanitizers due
to four false-negatives. This happens due to four undetected
existing information flows. In addition to JOANA, PIDGIN
demands us to write the constraints in its policy language.
Therefore, it builds the corresponding SDG [25] accordingly.
To prevent that we introduce policy specification errors, all
the authors of this work review each one. Therefore, we
believe PIDGIN misses these flows due to an issue in its
mechanism to build an SDG from the defined policy. For
Reflection, PIDGIN misses three existing flows whereas for
Sanitizers it misses one flow. However, the low number of
false-positives results in a high precision and accuracy. This
way, five test case groups obtain 100% value for precision,
recall, and accuracy.

Equally to FlowDroid, other researchers have also per-
formed a similar evaluation considering PIDGIN [26]. Nonethe-
less, in this case our results are equal to previous work [26].

By analyzing the last row of Table 2, JOANA has the
highest rate of detected flows, which is 135 out of 137. On
the other hand, PIDGIN misses two more flows. Therefore,
these tools present high rates of recall. Our results also show
that FlowDroid only detects 83 flows out of 124, which is
the worst result among these three IFC tools. Additionally,
JOANA has the highest rate of recall. It obtains 97% for this
metric whereas PIDGIN has 91%. Both tools are better than
FlowDroid which reached only 60% of recall. For the precision
metric, PIDGIN has 84% followed by FlowDroid with 70%,
and JOANA with 64%. Considering accuracy, PIDGIN also
achieves the best result with a rate of 80%.

Last but not least, we answer RQ1 stating that JOANA is
the best choice if the goal is high recall and PIDGIN is the
best choice if the goal is high precision or accuracy.

4.2 Analyzing real systems
In this section, we aim at answering RQ2 and RQ2.1. As men-
tioned in Section 3.5, we run JOANA and PIDGIN against
real systems. Next, we discuss our results for each system.

4.2.1 Blojsom results. Table 3 illustrates the results we ob-
tain for the Blojsom system regarding the Number of Vio-
lation Found (NVF) and Execution Time (ET) metrics. We
observe that both JOANA and PIDGIN are able to detect
the same existing confidentiality violation to C3, which we
define in Section 3.4. As Blojsom is a real system instead of a
benchmark with previously known violations, we do not know
whether these tools find all existing violations regarding C1,
C2, C3, C4, and C5. To mitigate this issue, we also manually
analyze Blojsom source code to confirm or discard violation
warnings provided by JOANA and PIDGIN.

Table 3: Blojsom results
JOANA PIDGIN

NVF ET NVF ET
C1 0 6120 0 390600
C2 0 1730 0 439200
C3 1 1604 1 457200
C4 0 1737 0 394000
C5 0 2385 0 393600
Total 1 13576 1 2074600

Indeed, there is a violation to C3. Listing 3 shows where
it occurs in the source code. The send() method writes
recipients information in log files through a call to the info()
method in lines 4 and 5. Therefore, info() incorrectly access
user email information, which is sensitive in this context.

Listing 3: Send e-mail method
1 v o i d send ( ) {
2 HtmlEmail mail = new HtmlEmail ( ) ;
3 . . .
4 _logger . i n f o ( ( new S t r i n g B u f f e r ( ) ) . append
5 ( " Email sent to " ) . append ( g e t R e c i p i e n t s ( ) ) ;
6 }

Regarding ET, Table 3 shows that JOANA performs the
same task faster than PIDGIN. To analyze the source code
for the five constraints, JOANA takes 13576 milliseconds
whereas PIDGIN takes 2074600. Thus, the former tool is
roughly 150 times faster than the latter for this example.
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4.2.2 Lutece results. Table 4 shows the results regarding
Lutece. It is interesting to notice that JOANA presents a
total of four violations found whereas PIDGIN achieves only
three. Furthermore, we can notice that JOANA is faster
than PIDGIN once again. We did not expect this outcome
because both tools use similar mechanisms to implement their
analysis, which is based in System Dependence Graphs [25].

Table 4: Lutece results
JOANA PIDGIN

NVF ET NVF ET
C6 1 6447 1 393000
C7 1 1701 0 408000
C8 2 1615 2 399000
C9 0 1838 0 435000
C10 0 1931 0 433200
Total 4 13523 3 2068200

As showed in Table 4, JOANA and PIDGIN identify a
confidentiality violation for C6. The snippet of code in List-
ing 4 shows strStoredPwd being passed as argument when
an exception is raised. Therefore, if the system throws this
exception, it could print the sensitive information in the
stack trace. Thus, a user who has access to the stack trace
is able to see passwords of different users, characterizing a
confidentiality violation.

Listing 4: getPassword method
1 IPassword getPassword ( S t r i n g strStoredPwd ) {
2 i n t strTypeSepIndex = strStoredPwd . indexOf ( ' : ' ) ;
3 i f ( strTypeSepIndex == −1) {
4 th row new I l l e g a l A r g E x c e p t i o n ( strStoredPwd ) ;
5 }
6 . . .
7 }

For C7, JOANA identifies a violation. The snippet of
code where it happens is shown in Listing 5. In line 2, the
DigestPassword class constructor assigns the strStoredPwd
value to the class field strPassword, which increases its
scope. This might represent a confidentiality violation. PID-
GIN is not able to identify this violation because it classifies
this case as a reading flow, which would not be a violation
to C7.

Listing 5: DigestString
1 DigestPassword ( . . . , S t r i n g strStoredPwd ) {
2 _strPassword = strStoredPwd ;
3 . . .
4 }

Moreover, for C8, JOANA and PIDGIN detects two vio-
lations. In lines 5 and 11 of Listing 6, the PBKDF2Password
class constructor can throw exceptions passing strPassword
as argument. However, this field might contain sensitive in-
formation. Therefore, if the system throws these exceptions,
it can print a sensitive information in the stack trace.

On the other hand, JOANA and PIDGIN correctly find
no violation for C9 and C10. Last but not least, as shown
in Table 4, JOANA is faster than PIDGIN to analyze these
five constraints. Indeed, the former is also approximately 150
times faster (i.e, same result for Blojsom).

Listing 6: PBKDF2Password
1 PBKDF2Password( S t r i n g strPassword , . . . ) {
2 . . .
3 i f ( . . . ) {
4 th row new I l l ega lArgumentExcept ion (
5 ERROR_PASSWORD_STORAGE + strPassword ) ;
6 }
7 t r y {
8 . . .
9 } c a t c h ( DecoderException e ) {

10 th row new I l l ega lArgumentExcept ion
11 (ERROR_PASSWORD_STORAGE + strPassword ) ;
12 } . . .
13 }

4.2.3 ScribeJava results. Table 5 illustrates the results con-
cerning the last five constraints defined for the ScribeJava
system. In this case, JOANA and PIDGIN obtain the same
results for the NVF metric. They identify one violation for
C12 and two violations for C13. Again, JOANA is faster than
PIDGIN.

Table 5: ScribeJava results

JOANA PIDGIN
NVF ET NVF ET

C11 0 5821 0 392100
C12 1 1732 1 434100
C13 2 1836 2 476300
C14 0 1898 0 365100
C15 0 2419 0 360300
Total 3 13706 3 2027900

JOANA and PIDGIN identify one violation for C12. In
debug mode, token information is written to the system log
files in Line 5 of Listing 7. This way, users who have access to
such log files are able to access token information. Depending
on the kind of token used in debugging, this information
might be sensitive (e.g., a developer uses his token to testing).
Thus, we determine that this is a confidentiality violation.

Listing 7: signRequest method
1 v o i d s ignRequest ( OAuth1AccessToken token ,
2 OAuthRequest r e q u e s t ) {
3 . . .
4 i f ( isDebug ( ) ) {
5 l o g ( " s e t t i n g token to : %s " , token ) ;
6 }
7 . . .
8 }

For C13, we analyze whether the log methods handle sensi-
tive information. In the signRequest() method of Listing 7,
the method responsible for writing information in the system
log file is called in debug mode, passing the token as an
argument. However, for C13 we count two violations instead
of one because this constraint has a rule stating that token
information cannot be read or written by log methods.

Moreover, JOANA and PIDGIN do not find violations for
C11, C14, and C15. Nonetheless, equally to the results for
Blojsom and Lutece, JOANA is faster to analyze these con-
straints. Again, it is roughly 150 times faster than PIDGIN.
4.2.4 Answers to RQ2 and RQ2.1. Based on the results dis-
cussed on Sections 4.2.1, 4.2.2, and 4.2.3, we answer RQ2
confirming that JOANA and PIDGIN can detect flows from
sensitive information to unauthorized methods for real sys-
tems. However, our assessment shows that JOANA is able to
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find more violations. Additionally, we answer RQ2.1 stating
that JOANA is approximately 150 faster than PIDGIN when
analyzing the same source code for the same constraints.
4.3 Discussion
Considering our answers to RQ1 in Section 4.1, JOANA is
the best choice when high recall is important. Therefore, it
is more suitable for scenarios where we need to detect the
highest number of existing violations (i.e., lowest number
of false-negatives). However, this comes with the cost of
lower precision and accuracy, that is, we need to manually
analyze whether the violation warnings are really violations.
To sum up, if we have enough resource to perform this manual
analysis, it is safer to use JOANA.

Moreover, JOANA allows different settings to increase or
decrease precision, as we stated in Section 4.1. In this way,
we could set it to build a larger System Dependence Graph
for this purpose with the cost of performance. Indeed, we
plan to investigate these JOANA’s optimizations in future
work. Our preliminary results show that strongly increasing
JOANA’s precision turns its execution time unfeasible. For
our current study, we decide to equally level the three tools
to the same settings to avoid bias.

In contrast to JOANA, we recommend PIDGIN when
higher precision and accuracy is important. Thereby, in case
we do not have enough resource to manually analyze a po-
tentially large amount of violation warnings, PIDGIN is the
best choice. However, we might also miss important existing
violations.

Furthermore, FlowDroid is designed specifically for An-
droid applications [14]. Although its authors claim we can
use it for project domains different than Android, we do
not recommend FlowDroid for this purpose because it would
demand resources to manually verify false warnings as well as
we would miss potentially important violations. In addition,
we would not detect violations where reflection is part of the
implementation.

At last, we reported the violations we have found (Ta-
bles 3, 4, and 5) to their respective development team in
order to validate our findings. However, until the conclusion
of this work, we have had no response. We provide further
detail on how we mitigate this limitation in Section 5.4.

5 THREATS TO VALIDITY
In this section, we discuss the threats to validity of our study.
According to Wohlin et al [10], we organize the threats as
Construct, Conclusion, External, and Internal validity.
5.1 Construct validity
Threats to construct validity cover issues related to the design
of the assessment and its capacity to answer the research
questions [10].

For our evaluation regarding the SecuriBench Micro (Sec-
tion 4.1), we evaluate the selected IFC tools presented in
Section 3.2, using only three metrics: recall, precision, and
accuracy. However, we do not consider other metrics such
as memory consumption. As future work, we plan to add
an assessment considering additional metrics. In particular,

memory consumption might be important when running IFC
tools in a resource-limited environment.
5.2 Conclusion validity
Threats to conclusion validity are concerned with issues that
affect the ability to draw the correct conclusion [10].

In order to verify the information flow in the target systems,
JOANA and PIDGIN use a graph called System Dependence
Graph (SDG) [25]. These tools allow us to build SDGs with
different levels of precision. For example, an instance-sensitive
setting is less precise although faster than object-sensitive [23].
For this work, we use the object-sensitive setting to build
SDGs within JOANA and PIDGIN. However, despite being
conceptually equivalent, there are differences in the SDG
construction implementation comparing these tools, which
might introduce bias in our conclusions.

Another important threat regards the constraints we de-
fine in Section 3.4. For this work, we have acquired knowl-
edge about Blojsom, Lutece, and ScribeJava source code and
their collaborative development environment (i.e., GitHub
and Jira1) to write our constraints. Nonetheless, we need to
manually provide different input formats (representing the
constraints) for the selected tools. This way, it might be easier
to test a given constraint using JOANA rather than PIDGIN.
As a matter of fact, this issue actually happens because we
use a graphical user interface provided by JOANA to set the
correct Sources and Sinks, which is faster than translating
the constraint to the PIDGIN policy language.

However, our evaluation encompasses only the execution
time, precision, recall, accuracy, number of violations found,
and execution time. Therefore, the fact that JOANA and
PIDGIN demand different inputs does not affect our conclu-
sions. At last, our constraints and selected systems are the
same for our assessment. Therefore, in this case, there is no
bias for our results considering the three IFC tools.

5.3 External validity
Threats to the external validity consider the generalization
of results [10].

To answer our research questions, we use a sample size
of three open-source systems. So, we cannot generalize the
results for projects of different sizes, domains, architectures,
and those that adopt a version control system different from
Git. However, the small sample of projects is due to the long
time needed to study the systems in order to be able to write
relevant constraints.

Other threat to validity regards the size of source code.
Both JOANA and PIDGIN use System Dependence Graphs
(SDG) [25] to analyze the information flow. However, static
analysis using SDG do not support projects larger than 100
KLOC [11]. Therefore, we cannot assure that our results
hold for projects larger than 100 KLOC. As an interesting
future work, we could implement an additional tool to tame
unnecessary SDG nodes and edges, which would make it
possible to analyze such large projects. We could implement

1https://www.atlassian.com/software/jira

https://www.atlassian.com/software/jira
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this tool based on the work of Ali and Lhoták, which aims
at building application-only call graphs [1, 2].
5.4 Internal validity
Threats to the internal validity concern the fact that the
assessment affects the results [10].

In this work, we study the target systems explained in
Section 3.3 in order to understand which kind of sensitive
information they handle. Then, we define constraints for these
projects. However, we cannot guarantee that all sensitive
information they handle are specified in our constraints. As a
result of this limitation, we might have missed other violations
for our three target projects. Since our evaluation considers
the same set of constraints for PIDGIN and JOANA, this
threat does not influence our conclusions about violation
found and execution time.

As stated before, JOANA and PIDGIN use a data structure
called System Dependence Graph (SDG). In order to correctly
build this graph, we must provide as input an entry method
to represent the root node [23, 25]. Since we manually select
entry methods, we might have missed paths that could lead
to violations. However, this problem is intrinsic to building
SGD with JOANA and PIDGIN. Additionally, we use the
same entry methods for these tools, which removes bias for
their results in our assessment.

At last, we report the violations we have found for the
developers responsible for each system: Blojsom, Lutece, and
ScribeJava. Until the submission of this work, we have had
no response. However, in order to minimize this limitation,
we perform a manual analysis of the source-code for each
violation identified by the tools. Additionally, we informally
discussed and ratified the violations we found.

6 RELATED WORK
In this section, we discuss related work. First, we consider
studies of IFC tools against the SecuriBench Micro (Sec-
tion 6.1). At last, we discuss work on IFC tools assessment
considering real software projects (Section 6.2).
6.1 IFC tools against SecuriBench Micro
In their work on security analysis of web applications, Tripp
et al. motivate their tool named ANDROMEDA against
the SecuriBench Micro [13]. Differently from us, they only
consider the Aliasing group. Additionally, the authors do
not present an assessment regarding precision, recall, and
accuracy for ANDROMEDA.

On a similar work, Zanioli et al. evaluate a tool called
Sails against three (out of ten) SecuriBench Micro test case
groups [38]. Besides neglecting seven groups, the authors only
provide the false alarm metric as output of their evaluation.
In contrast, our study considers the ten existing SecuriBench
Micro test case groups as well as we provide more metrics,
as showed in Table 2.

Differently from the aforementioned related work, Hamann
et al. [16] present a new benchmark suite, called IFSpec, to
allow researchers to test their information-flow analysis tools
targeting source code and bytecode for Java and Android
applications. The authors evaluate their benchmark, which

subsumes the SecuriBench Micro, on four IFC tools. Indeed,
we plan to also test our three selected tools against IFSpec
mainly regarding PIDGIN and Flowdroid, which have not
been tested.
6.2 IFC tools and real software projects
Tripp et al. evaluate whether their BAYESDROID tool is able
to find violations for real Android applications [36]. Since it
runs for a specific domain only (Android), the authors do not
need to manually define policies because they are the same
for all applications (e.g., IMEI cannot flow to send message
methods). Albeit Tripp et al. detect several violation warn-
ings, they do not perform a comparison to other similar tools
for real software systems (i.e., Android apps). In contrast,
we compare the ability of JOANA and PIDGIN to detect
violation warnings for a set of defined policies regarding real
Java-written software systems.

Also, within Android context, Continella et al. [9] propose
a new approach to detect privacy violations. Thus, the au-
thors implement a tool, called AGRIGENTO, and evaluate it
on more than one thousand Android apps. The evaluation of
their tool compared AGRIGENTO against four well-known
security-related Android tools. As above-mentioned, since
policies for Android apps are fixed, the authors do not need
to manually seek Sources and Sinks. In contrast, our work
considers software systems of different domains, which de-
manded a large amount of time to manually find sensitive
information. Consequently, our study considers only three
real systems.

An additional related work regards the definition of a policy
language to write privacy and security rules. Andrade et al.
define Salvum for this purpose [3]. The authors then write
a number of Salvum rules and use JOANA under the hood
to check for violations considering nine open-source projects.
Therefore, they evaluate their policy language instead of
comparing diverse solutions. In contrast, our work aims at
assessing different IFC tools to check which one is the most
suitable depending on researchers’ goals.
7 CONCLUSION
This work presented a comparative analysis of recall, preci-
sion and accuracy of three Information Flow Control tools:
JOANA, FlowDroid, and PIDGIN. The main focus was on
the tools capability of identifying sensitive information secu-
rity violation. Although, run-time was also considered. The
results allowed conclusions about the performance of the
selected tools.

When executing the three projects in a well-known bench-
mark, the SecuriBench Micro, we could verify that JOANA
and PIDGIN had similar results regarding recall, precision,
and accuracy. These tools were able to identify most of the
existing SecuriBench Micro violations. However, FlowDroid
presented lower results, with a high number of false-negatives.

We observed that JOANA is the best tool when aiming for
a high recall, especially when there are resources for manual
analysis afterwards (due to the low precision). But, when
aiming for a high precision and accuracy, the best tool is
PIDGIN.
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So, since JOANA and PIDGIN overcome FlowDroid, in
order to demonstrate its applicability in real projects, we
selected three systems to be tested: Blojsom, Lutece, and
ScribeJava. These projects are Java-written, open-source,
and handle sensitive information such as user’s password
and API’s tokens. So, we defined five constraints, which
contains confidentiality and integrity rules, for each system
and executed them in both tools. On the one hand, JOANA
was able to identify 8 violations that could compromise the
privacy and security of these systems. On the other hand,
PIDGIN identified 7 violations. With that, we can conclude
that JOANA presented a result slightly superior to PIDGIN,
considering the restrictions we wrote.

Furthermore, adding the run-time value into the compar-
ison, we could notice that JOANA proved to be a good
alternative, presenting similar results to the PIDGIN, but
with a considerably lower run-time.

At last, as future work, we intend to replicate our bench-
mark study considering IFSpec [16], which provides sample
programs for checking that IFC tools correctly classifies them
as secure or insecure. In this context, we could ratify our
current findings or bring other interesting results. We also
plan to investigate why PIDGIN and JOANA have such a dif-
ferent execution time considering the same target system and
constraint. Therefore, we need to understand the differences
of their System Dependence Graph construction. The results
of this study would help other researchers to either improve
PIDGIN or prevent mistakes that lead to such performance
loss. Additionally, we plan to use PIDGIN and JOANA to de-
tect violations for more target systems to ratify our findings.
Another interesting future work would be to add other IFC
tools, such as the Checker Framework2, to our assessment,
which could also bring insights to help other researchers to
choose the most suitable IFC tool for their scenarios.
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