Confusion in Code Reviews: Reasons, Impacts, and
Coping Strategies

Felipe Ebert*, Fernando Castor®, Nicole Noviellif, Alexander Serebrenik?
*Federal University of Pernambuco, Brazil, {fe,castor} @cin.ufpe.br
TUniversity of Bari, Italy, nicole.novielli@uniba.it
Eindhoven University of Technology, The Netherlands, a.serebrenik@tue.nl

Abstract—Code review is a software quality assurance practice
widely employed in both open source and commercial software
projects to detect defects, transfer knowledge and encourage
adherence to coding standards. Notwithstanding, code reviews
can also delay the incorporation of a code change into a code
base, thus slowing down the overall development process. Part of
this delay is often a consequence of reviewers not understanding,
becoming confused by, or being uncertain about the intention,
behavior, or effect of a code change.

We investigate the reasons and impacts of confusion in code
reviews, as well as the strategies developers adopt to cope with
confusion. We employ a concurrent triangulation strategy to
combine the analyses of survey responses and of the code review
comments, and build a comprehensive confusion framework
structured along the dimensions of the review process, the artifact
being reviewed, the developers themselves and the relation
between the developer and the artifact. The most frequent
reasons for confusion are the missing rationale, discussion of non-
Jfunctional requirements of the solution, and lack of familiarity
with existing code. Developers report that confusion delays the
merge decision, decreases review quality, and results in additional
discussions. To cope with confusion developers request informa-
tion, improve familiarity with existing code, and discuss off-line.

Based on the results, we provide a series of implications for tool
builders, as well as insights and suggestions for researchers. The
results of our work offer empirical justification for the need to
improve code review tools to support developers facing confusion.

Index Terms—code review; confusion; survey; cards sorting.

I. INTRODUCTION

Code review is a an important practice for software quality
assurance, which has been widely adopted in both open source
and commercial software projects [1], [2], [3], [4], [5]. The
benefits of code reviews are well-known. Active participation
of developers in code reviews decreases the number of post-
release defects and improves the software quality [6], [7];
knowledge transfer and adherence to the project coding stan-
dards are additional benefits of code reviews [8], [9], [10].

However, code reviews also incur cost on software de-
velopment projects as they can delay the merge of a code
change in the repository and, hence, slowdown the overall
development process [11], [12]. Indeed, the time spent by
a developer reviewing code is non-negligible [1] and may
take up to 10-15% of the overall time spent on software
development activities [13], [6]. The merge of a code change
in the repository can be even further delayed if the reviewers
experience difficulties in understanding the change, i.e., they
are not certain about its correctness, run-time behavior and

978-1-7281-0591-8/19/$31.00 (© 2019 IEEE

49

impact on the system [6], [9], [14], [15], [16]. As such, we
believe that a proper understanding of the main reasons for
confusion in code reviews represents a necessary starting point
towards reducing the cost and enhancing the effectiveness of
this practice, thus improving the overall development process.

We focus on confusion experienced by developers during
code review, its reasons and impacts, as well as on the
strategies adopted by developers to cope with it. By confusion
we mean “any situation where the person is uncertain about
anything or unable to understand something” [17]. We do not
distinguish between lack of knowledge, confusion, and uncer-
tainty. Indeed, confusion (which also encompasses doubt and
uncertainty) and lack of knowledge are strictly connected (e.g.,
confusion could be determined by lack of knowledge) [18].

Our goals are threefold. First, we aim at obtaining
empirically-driven actionable insights for both researchers and
tool builders, on what are the main causes of confusion in code
reviews. Thus, we formulate our first research question:

RQ1.What are the reasons for confusion in code reviews?

We have observed that the three most frequent reasons for
confusion are missing rationale, discussion of the solution:
non-functional, and lack of familiarity with existing code.

Second, while confusion can be expected to negatively
affect code reviews, we would like to identify specific impacts
of confusion. By monitoring these impacts developers and
managers can curb the undesirable consequences. As such,
we formulate our second research questions:

RQ2. What are the impacts of confusion in code reviews?

Our results suggest that the merge decision is delayed
when developers experience confusion, there is an increase
in the number of messages exchanged during the discussion,
and the review quality decreases. However, we also observed
unexpected consequences of confusion, such as helping to
find a better solution. This suggests that communicating
uncertainty and doubts might be beneficial for collaborative
code development, i.e., by inducing critical reflection [19] or
triggering knowledge transfer [9].

Finally, we believe that understanding the strategies adopted
by the developers to deal with confusion can further inform
the design of tools to support code reviewers in fulfilling their
information needs associated to the experience of uncertainty
and doubt. As such, we formulate our third research question:

RQ3. How do developers cope with confusion during code
reviews?

SANER 2019, Hangzhou, China
Research Papers

The results suggest that developers try to deal with confu-
sion by requesting information, improving the familiarity with
existing code, and discussing off-line the code review tool. We
also found that confusion might simply induce developers to
blindly approve the code change, regardless its correctness.

The main contribution of our work is a comprehensive
framework for confusion in code reviews including reasons,
impacts, and coping strategies. To address our research ques-
tions, we implement a concurrent triangulation strategy [20]
by combining a survey (‘what people think’) with analysis of
the code review comments (‘what people do’) from the dataset
provided by Ebert et al. [17]. The data collected and manually
annotated during the study are released to enable follow-up
studies.! Based on the analysis of the framework we formulate
a series of suggestions for tool builders and researchers.

The findings of our study complement recent research on
comprehension in code reviews, i.e., the study by Ebert et
al. [17] proposing a model to identify confusion in code
reviews and the one by Pascarella er al. [11], focusing on
understanding the information needs of code reviewers.

The remainder of the paper is organized as follows. Sec-
tion II presents the necessary background information. Sec-
tion IIT describes the methodology, and Section IV—results.
We discuss the results and their implications in Section V.
The threats to validity are discussed in Section VI. Section VII
presents the related work and Section VIII concludes.

II. CODE REVIEW

Formal code review was first defined by Fagan in 1976 as a
software inspection practice, a structured process for reviewing
source code with the single goal of finding defects, usually
conducted by groups of reviewers in extended meetings [21].
Open source projects have been employing some form of
code reviews for more than two decades. In particular, this
practice became very popular with the Linux operating system
kernel [22]. Based on the reviewing practices observed at
MICROSOFT in 2013, Bacchelli and Bird [9] have defined
the concept of modern code review, a frequent and informal
process supported by ad hoc tools, i.e., a more lightweight
process compared to the one depicted by Fagan’s definition.
From here on we refer to modern code review as code review.

Depending on when the review is done, one can distinguish
between review-then-commit (pre-commit), which involves re-
viewing the code before it is integrated into the main repos-
itory, and commit-then-review (post-commit), which involves
reviewing the code after its integration in the main reposi-
tory [23]. Figure 1 presents an overview of the typical code
review process following the review-then-commit method. The
code review is triggered by the author submitting a code
change (1). The reviewers then check and verify the change (2)
based on its correctness, adherence to the project guidelines,
conventions, and quality criteria. If the code change does not
satisfy these requirements, the reviewers either ask the author
at

IThe dataset is available

confusion-code-reviews

https://github.com/felipeebert/

50

= 3
Reviewers’ Comments
Y
f: <9 1 : | ‘ 2 j: 9
20 w—p ||l =gk
[= Q [\
Author Co@: hange Reviewers
4
=€
o Approved
Code
Repository — | ‘ 5
%\‘Y y € Rejected
Abandoned

Fig. 1. Code review process.

to revise it or to submit a new one (3). Once the reviewers are
satisfied, the change is integrated in the code repository (4).
Conversely, if the change does not satisfy the reviewers, it is
rejected and the code review is abandoned (5).

III. METHODOLOGY

In the following, we describe how we implement the
concurrent triangulation strategy [20]. First, we conduct a
survey to understand “what developers say” (Section III-A).
Then we analyze the code review comments to understand
“what developers do” (Section III-B). Finally, we compare and
contrast the findings of the two analyses (Section III-C).

A. Surveys

In literature, a theory is missing to describe what are the
reasons for confusion in code reviews, the impact of confu-
sion on the development process, and what coping strategies
developers employ to deal with confusion. As such, to answer
our RQs we opt for grounded theory building [24], [25]. We
implement an iterative approach. During each iteration, we
administer a survey to developers involved in code reviews.
We ask developers that already answered the survey during one
of the previous iterations to refrain from answering it again.

1) Survey design: The survey was designed according to
the established best practices [26], [27], [28], [29]: prior to
asking questions, we explain the purpose of the survey and
our research goals, disclose the sponsors of our research
and ensure that the information provided will be treated in
a confidential way. In addition, we inform the participants
about the estimated time required to complete the survey, and
obtain their informed consent. The invitation message includes
a personalized salutation, a description of the criteria we used
for participant selection, as well as the explanation that there
would not be any follow up if the respondent did not reply.
This last decision also implies that we did not send reminders.

The survey starts with the definition of confusion as pro-
vided in Section I, followed by a question requiring the partic-

TABLE I
SURVEY QUESTIONS. THE QUESTIONS MARKED “*” WERE ONLY USED IN THE FIRST SURVEY, “+” —ONLY IN THE SECOND AND THIRD SURVEYS.

Electronic Consent
0. Please select your choice below. Selecting the “yes” option below indicates that: i) you have read and understood the above information, ii) you voluntarily agree to
participate, and iii) you are at least 18 years old. If you do not wish to participate in the research study, please decline participation by selecting “No”.

Definition of Confusion
The remainder of this survey is dedicated to “confusion”. We do not make a distinction between lack of knowledge, confusion, or uncertainty. For simplicity reasons, we

use the “confusion” to refer to all these terms.
1.

By clicking “next” you declare that you understand the meaning of confusion on this survey.

Review-Then-Commit
2.* Have you ever taken part in a “review-then-commit” type of code review (i.e., the code is reviewed before it is integrated into the main repository), either in the role of

author or reviewer?

When reviewing code changes
3. Developers might feel confused or think that they do not understand the code they review. How often did you feel this way when reviewing code changes?
4. What usually makes you confused when you are reviewing code changes? Please explain which factors led you to be confused.

5. Please describe a change you have been reviewing that has confused you.
6. How does the confusion you experience as a reviewer impact code review?

7. What do you usually do to overcome confusion in code reviews? Please explain the actions you take when you feel confused.
8." When you do not understand a code change, do you usually express this in general comments or in inline comments? Please explain why in the “other” field.

When authoring code changes
9. Developers who authored code changes might feel confused or think that they do not understand something when their code is being reviewed. How often did you feel

this way when your code has been reviewed?

10. What usually makes you confused during the code review when you are the author of the code changes? Please explain which factors led you to be confused.

11. Please describe a change you have been authoring that has confused you.

12. How does confusion you experience as the code change author impact the code review?
13. What do you usually do to overcome confusion in code reviews? Please explain the actions you take when you feel confused.
14."When you do not understand a code change, do you usually express this in general comments or in inline comments? Please explain why in the “other” field.

Background

15. What is your experience as a developer?

16. What is your experience as a code reviewer?

17. How often do you submit code changes to be reviewed?
18. How often do you review code changes?

19."Do you have the merge approval right (i.e., the permission to give +2) in Gerrit at least for one software development project?

20."Which option would best describe yourself?
- I contribute to Android voluntarily.

- I'm employed by Google and I contribute to Android as part of my job.- Other.

- I’'m employed by a company other than Google and I contribute to Android as part of my job.

Results
21. Would you like to be informed about the outcome of this study and potential publications? Please leave a contact email address.

22. Would you be willing to be interviewed afterwards?
23. Please add additional comments below.

ipants to confirm that they understood the definition. Next, we
ask two series of questions: the questions were essentially the
same but were first asked from the perspective of the author of
the code change, and then from the perspective of the reviewer
of the change (cf. Table I). Each series starts with the Likert-
scale question about the frequency of experienced confusion:
never, rarely, sometimes, often, and always. To ensure that
the respondents interpret these terms consistently we provide
quantitative estimates: 0%, 25%, 50%, 75% and 100% of the
time. For respondents who answered anything different from
never, we pose four open-ended questions (to get the as rich
as possible data [30]): i) what are the reasons for confusion, ii)
whether they can provide an example of a practical situation
where confusion occurred during a code review (RQ1), iii)
what are the impacts of confusion (RQ?2), and iv) how do they
cope with confusion (RQ3). Finally, we ask the participants
to provide information about their experience as developers
and frequency of reviewing and authoring code changes. We
ask these question at the end of the survey rather than at
the beginning to reduce the stereotype threat [29]. Prior to
deploying the survey, we discussed it with other software
engineering researchers and clarified it when necessary.

2) Participants: The target population consists of develop-
ers who participated in code reviews either as a change author
or as a reviewer. During the first iteration we target ANDROID

51

developers who participated in code reviews on GERRIT: 4,645
of their email addresses provided by Ebert et al. [17] allow us
to contact the developers by email and evaluate the response
rate. In the subsequent iterations, the survey was announced on
FACEBOOK and TWITTER. As the exact number of developers
participating in code reviews reached cannot be known we do
not report the response rate for the follow-up surveys.

3) Data analysis: To analyze the survey data, we use a
card sorting approach [31]. We analyze the survey responses
from the first iteration using open card sorting [31], i.e.,
topics were not predefined but emerged and evolved during
the sorting process. After each subsequent survey iteration, we
use the results of the previous iteration to perform closed card
sorting [31], i.e., we sort the answers of each survey iteration
according to the topics emerging from the previous one. If the
closed card sorting succeeds, this means that the saturation
has been reached and sampling more data is not likely to lead
to the emergence of new topics [32], [33]. In such a case
the iterations stop. If, however, during the closed card sorting
additional topics emerge, another iteration is required.

To facilitate analysis of the data we use axial coding [27]
to find the connections among the topics and group them into
dimensions. These dimensions emerge and evolve during the
final phase of the sorting process, and they represent a higher
level of abstraction of the topics.

As we have multiple iterations and multiple surveys an-
swered by different groups of respondents, a priori it is not
clear whether the respondents can be seen as representing the
same population. Indeed, it could have been the case that, e.g.,
respondents of the second survey happened to be less inclined
to experience confusion than the respondents of the third sur-
vey and the reasons of their confusions are very different. This
is why we first check similarity of the groups of respondents
in terms of their experience as developers and code reviewers,
frequency of submitting changes to be reviewed and reviewing
changes as well as frequency of experiencing confusion. If
the groups of respondents are found to be similar, we can
consider them as representing the same population and merge
the responses. If the groups of respondents are found to be dif-
ferent, we treat the groups separately. To perform the similarity
check we use two statistical methods: i) analysis of similarities
(ANOSIM) [34], which provides a way to test statistically if
there is a significant difference between two or more groups
of sampling units, and ii) permutational multivariate analysis
of variance using distance matrices (ADONIS) [35], [36].2

B. Analysis of Code Review Comments

To triangulate the survey findings for the RQs we perform
an analysis of code review comments. As a dataset we use the
one provided by Ebert e al. [17]. Similarly to the developers
contacted during the first survey iteration, this dataset pertains
to ANDROID. The code reviews of ANDROID are supported by
GERRIT, which enables communication between developers
during the process by using general and inline comments.
The former are posted in the code review page itself, which
presents the list of all general comments, while the inline
comments are included directly in the source code file. The
dataset of Ebert et al. comprises 307 code review comments
manually labeled by the researchers as confusing: 156 are
general and 151 are inline comments.

Similarly to the analysis of the survey data, we use card
sorting to extract topics from the code review comments. We
conduct an open card sorting of the general comments to
account for the possibility of divergent results, i.e., we did
not want to use the results from the surveys because what
developers do often differs from what they think they do and
the emergent codes might a priori be different from those
obtained when analyzing the survey data. To confirm the topics
emergent from the general comments we then perform a closed
card sorting on the inline comments.

C. Triangulating the Findings

Recall that the goal of concurrent triangulation is to cor-
roborate the findings of the study, increasing its validity.
However, following Easterbrook ez al. [20] we expect to see
some differences between ‘what people say’ (survey) and
‘what people do’ (code review comments). Hence, if the

2Both methods are available as functions in the R package vegan. ANOSIM
has been implemented by Jari Oksanen, with a help from Peter R. Minchin.
ADONIS has been implemented by Martin Henry H. Stevens and adapted to
vegan by Jari Oksanen.

52

topics extracted from the surveys and code review comments
disagree, we conduct a new card sorting round only on the
cards associated with topics discovered on the basis of the
survey but not on the basis of the code review comments,
or vice versa. In order not to be influenced by the results of
the previous card sorting, we perform open card sorting and
exclude the researchers who participated in the previous card
sorting rounds. Finally, in order to finalize the comprehensive
framework for confusion in code reviews, we perform the
consistency check within the topics and deduction of more
generic topics, as recommended by Zimmermann [31], as well
as a consistency check across RQs (i.e., reasons, impacts, and
coping strategies) and emergent dimensions.

IV. RESULTS

We discuss the application of the research method in
practice (Section IV-A), and analyze similarity between the
responses received at each one of the survey iterations (Sec-
tion IV-B). Then, we present the demographics results from
the survey (Section IV-C), and discuss reasons for confusion
(RQ1, Section I'V-D), its impact (RQ2, Section IV-E), and the
strategies employed to cope with it (RQ3, Section IV-F).

A. Implementation of Approach

The implementation of the approach designed in Section III
is shown in Figure 2. Individuals involved in the card sorting
are graduate students in computer science or researchers.

First, following the iterative approach we have performed
three iterations since saturation has been reached. Among the
4,645 emails sent during the first iteration, 880 emails have
bounced; hence, 17 valid responses correspond to the response
rate 0.45%. Such response rate was unexpected® and might
have been caused by presence of inactive members or one-
time-contributors [42]. For the second and the third survey
rounds, the number of responses are 24 and 13 respectively;
the response rate could not be computed.

The open card sorting of the first survey resulted in 52 topics
related to the reasons (25), impacts (14) and coping strategies
for confusion (13). The closed card sorting of the second
survey resulted in three additional topics: two for impacts and
one for the coping strategies. Finally, the closed card sorting
of the third survey resulted in no new topics. The open card
sorting on the general comments resulted in 16 topics related
only to the reasons for confusion, i.e., no topics related to the
impacts and coping strategies appeared. Then, the closed card
sorting on the inline comments resulted in no new topics.

During the triangulation, we verified that what developers
said about the reasons for confusion (survey) has a little agree-
ment with what developers did in the code review comments.
Only 6 topics were found both among the survey answers
and code review comments, 19 topics appeared only in the
survey and 10 topics—in the code review comments. Thus,
we decided to conduct another card sorting on the divergent

3The common response rates in Software Engineering range between 15%
and 20% [37], [38], [39], [40] and sometimes much higher response rates are
reported [41].

29 topics. This time, since it was an open card sorting, from the
cards belonging to divergent topics we identified 42 topics. As
the last step, we finalized the comprehensive framework and
obtained a total of 57 topics related to reasons (30), impacts
(14), and coping strategies (13). After finalizing the topics we
observe that 70% (21/30) of them have cards both from the
surveys and from the review comments. Moreover, the shared
topics cover the lion’s share of the cards: 94.9% of the survey
cards and 90.7% of the code review comments’ cards.

As explained above, using axial coding we identified the
following dimensions, common for answers to the three RQs:
review process (18 topics): the code review process, including
issues that affect the review duration; artifact (15 topics):
the system prior to change, code change itself and its doc-
umentation or the system after change; developer (15 topics):
topics regarding the person implementing or reviewing the
change; link (9 topics): the connection between developers
and artifacts, e.g., when a developer indicates that they do
not understand the code. Examples of topics of different
dimensions can be found in Sections IV-D, IV-E and IV-F.

B. Analysis of Similarity of the Surveys’ Results

First, we verified the similarity of the second and third sur-
veys. Since both were published on FACEBOOK and TWITTER,
we expect the values to be similar, i.e., respondents to represent
the same population. Using both ANOSIM (R = —0.0171 and
p-value = 0.542) and ADONIS (p-value = 0.975) we could
not observe statistically significant differences between the
groups, i.e., the answers can be grouped together. Then, we
checked the similarity between the answers to the first survey
(ANDROID developers) and the answers to the second and
the third surveys taken together. The results of the ANOSIM
analysis, R = 0.126 and p-value = 0.01, showed that the differ-
ence between the groups is statistically significant. However,
the low R means that the groups are not so different (values
closer to 1 mean more of a difference between samples), i.e.,
the overlap between the surveys is quite high. This observation
is confirmed by the outcome of the ADONIS test: the p-value
= 0.191 is above the commonly used threshold of statistical
significance (0.05). Based on those results, we conclude that
the respondents represent the same population of developers
and report the results of all three surveys together.

C. Demographics of the Survey Respondents

The respondents are experienced code reviewers, 80% (38 of
47 respondents that answered questions about demographics)
have more than two years of experience reviewing code
changes. The experience of our population as developers, i.e.,
authoring code changes, is even higher: 93% (44 respondents)
have been developing for more than two years. The number of
years of experience as developers is higher than the number
of years of experience as reviewers: this is expected because
reviewing tasks are usually assigned only to more experienced
individuals [43]. Respondents are active in submitting changes
for review, and even more active in reviewing changes: almost

53

49% (23 developers) submit code reviews several times a
week, while for reviewing this percentages reaches 72% (34).

The frequencies with which code change authors and code
reviewers experience confusion are summarized in Figure 3.
On the one hand, when reviewing code changes, about 41%
(20) of the respondents feel confusion at least half of the
time, and only 10% (5) do not feel confusion. On the other
hand, when authoring code changes only 12% (6) of the
respondents feel confusion at least half of the time, and 35%
(17) of the respondents do not feel confusion. Comparing the
figures we conclude that confusion when reviewing is very
common, and that developers are more often confused when
reviewing changes submitted by others as opposed to when
authoring the change themselves. We also applied the 2 test
to check whether experience influences frequency of confusion
being experienced. The test was not able to detect differences
between more and less experienced developers in terms of
frequency of confusion being experienced as a developer,
nor between more and less experienced reviewers in terms
of frequency of confusion being experienced as a reviewer
(p ~ 0.26 and 0.09, respectively).

D. RQI. What Are the Reasons for Confusion in Code Re-
views?

We found 30 reasons for confusion in code review (see
Table II). They are spread over all the dimensions, with the
artifact and review process being the most prevalent.

There are seven reasons for confusion related to the code
review process. The most common is organization of work
which comprises reasons such as unclear commit message
(e.g., “when the description of the pull request is not clear”,
R50), the status of the change (e.g., “ I'm unsure about the
status of your parallel move changes. Is this one ready to be
reviewed? [...]’)*, or the change addressing multiple issues
(e.g., “change does more than one things”, R31). The second
and third reasons most cited are, respectively, confusion about
the tools, e.g., “I don’t know why the rebases are causing new
CLs”,?, and the need of the code change, e.g., “If I understand
correctly, this change might not be relevant any more”.

The artifact dimension it is the largest group with 11 topics
related to the reasons for confusion. The most popular is
the absence of the change rationale, e.g., “I do not fully
understand why the code is being modified” (R20). Discussion
of the solution related to non-functional aspects of the artifact
is the second largest topic and it comprises reasons such
as poor code readability (e.g., “Poorly implemented code”
(R43)), and performance (e.g., “is this true? i can’t tell any
difference in transfer speed with or without this patch. i still
get roughly these numbers from “adb sync” a -B build of
bionic: [...]”).7 The third most frequent reason indicates that
developers experience confusion when unsure about the system

“https://android-review.googlesource.com/c/132581
Shttps://android-review.googlesource.com/c/71976
Ohttps://android-review.googlesource.com/c/33140
7https://android-review.googlesource.com/c/91510

Surveys Card Sorting
(1% Survey (open > [+ 25 reasons
17 valid) — ¢ 14 impacts
responses .

13 coping strategies

* From:Nov 13,2017

* Till: Dec 20, 2017

* Lastresponse: Dec 8, 2017
* Response rate: 0.45%

Triangulation Card Sorting

Fernando with Wellington,
Nicole with Alexander

Reasons

24 valid
responses

25 reasons
16 impacts
14 coping strategies

* From: Dec 20, 2017
* Till: Jan 25,2018
* Lastresponse: Jan 16, 2018

13 valid .
responses .

¢ 25 reasons
16 impacts
14 coping strategies

e From: Mar 20, 2018
« Till: Apr 10, 2018
¢ Lastresponse: Mar 22,2018

Felipe, Fernando

Code Review
Comments Framework Finalization
m .
Me_ @ « 16 reasons Nicole and Alexander
156 General > 16 topics | -] * Oimpacts + 30 reasons
Comments _ * 0 coping strategies .
¢ 14 impacts
+ From: Oct, 2010 Felipe, We;slley, Tianyu . 13 coping strategies
* Till: Nov, 2016 \/
h
M~ @ + 16 reasons
151 Inline feiei>l - O nEW .+ Oimpacts |-
Comments topics 0 coping strategies

¢ From: Oct, 2010
* Till: Nov, 2016

Felipe, Weslley, Tianyu

Fig. 2. Implementation of the approach: three survey rounds, general and inline comments, the triangulation, and finalization rounds.

Reviewer

Developer . Author

0
Always- g

5
Often (75% of the time)- g

15
Sometimes (50% of the time)- - 5
23
Rarely @t ofthe i) N 25
5
Never” I 17
0 10 20

Response rate

Fig. 3. Frequency of confusion for developers and reviewers.

behavior, e.g., “what is the difference between this path (false
== unresolved) and the unresolved path below. [...]".3

Six reasons for confusion are related to the developer di-
mension. Disagreement among the developers is the prevalent

topic, e.g., “[...] If actual change has a big difference from

8https://android-review.googlesource.com/c/83350

my expectation, I am confused.” (R11). The second most cited
reason is the misunderstanding of the message’s intention, e.g.,
“Sometimes I don’t understand general meaning (need to read
several times to understand what person means)” (R13).

Six reasons are related to the link between the developer and
the artifact. The most popular one is the lack of familiarity with
existing code, e.g., “Lack of knowledge about the code that’s
being modified.” (R37) followed by the lack of programming
skills, e.g., “sometimes I'm confused because missing some
programming” (R13), and the lack of understanding of the
problem, e.g., “I'm embarrassed to admit it, but I still don’t

understand this bug.”.’

RQ1 Summary: We found a total of 30 reasons for confu-
sion. The most prevalent are missing rationale, discussion
of the solution: non-functional, and lack of familiarity with
existing code. We observe that tools (code review, issue
tracker, and version control) and communication issues,
such as disagreement or ambiguity in communicative in-
tentions, may also cause confusion during code reviews.

9https://android-review.googlesource.com/c/170280

54

TABLE 11
THE REASONS, IMPACTS AND COPING STRATEGIES DEVELOPERS USE TO DEAL WITH CONFUSION; IN THE PARENTHESIS ARE THE NUMBERS OF CARDS.

Artifact
15 topics (300)

Review process
18 topics (120)

Link
9 topics (177)

Developer
15 topics (124)

Organization of work (17)

Issue tracker, version control (7)
Unnecessary change (6)

Not enough time (3)
Dependency between changes (3)

Missing rationale (66)

Unsure about system behavior (37)
Lack of documentation (29)
Discussion of the solution: strategy (29)

Discussion of the solution: non-functional (49) Communicative intention (9)

Disagreement (18) Lack of familiarity with existing code (47)
Lack of programming skills (40)

Lack of understanding of the problem (21)
Lack of understanding of the change (17)

Lack of familiarity with the technology (14)

Language issues (3)
Propagation of confusion (3)
Fatigue (1)

Reasons Code ownership (2) Long, complex change (25) Noisy work environment (1) Lack of knowledge about the process (3)
30 topics Community norms (2) Lack of context (19)
(507) Discussion of the solution: correctness (14)
Impact of change (11)
Irreproducible bug (6)
Lack of tests (5)
Delaying (31) Better solution (1) Decreased confidence (10)
Decreased review quality (11) Incorrect solution (1) Abandonment (6)
Additional discussions (11) Frustration (5)
Impacts Blind approval (8) Anger (2)
14 topics Review rejection (4) Propagation of confusion (2)
(98) Increased development effort (4)
Assignment to other reviewers (2)
Coping Improved organization of work (5) Small, clear changes (4) Information requests (36) Improved familiarity with existing code (28)

strategies Delaying (2)
13 topics Assignment to other reviewers (1)
(116) Blind approval (1)

Improved documentation (4)

Off-line discussions (12) Testing the change (5)
Providing/accepting suggestions (10) Improved familiarity with the technology (2)
Disagreement resolution (6)

E. RQ2. What Are the Impacts of Confusion in Code Reviews?

The total number of topics related to the impacts of confu-
sion is 14 (see Table II). They are related to the dimensions of
the review process, artifact, and developer. There was no topic
related to the link between the developer and the artifact.

We found seven impacts of confusion related to the code re-
view process. Delaying the merge decision is the most popular
impact, e.g., “The review takes longer than it should” (R46).
The second and third most cited impact are that confusion
makes the code review quality decrease, e.g., “Well I can’t
give a high quality code review if I don’t understand what
I am looking at” (R5), and an increase in the number of
messages exchanged during the discussion, e.g., “Code reviews
take longer as there’s additional back and forth” (R1). One
interesting impact of confusion is the blind approval of the
code change by the developer, even without understanding it,
e.g., “Blindly approve the change and hope your coworker
knows what they’re doing (it is clearly the worst; that’s how
serious bugs end up in production)” (R16). Confusion may
also lead to developers to just reject a code change, e.g., “I'm
definitely much more likely to reject a ’confusing’ code review.
Good code, in my experience, is usually not confusing” (R36).

There are only two impacts of confusion related to the
artifact itself. First, the developer may find a better solution
because of the confusion, e.g., “It has not only bad impact
but also good impact. Sometimes I can encounter a better
solution than my thought” (R11). Second, the code change
might be approved with bugs, as the reviewer is not be able
to review it properly due confusion, e.g., “Sometimes repeated
code is committed or even a wrong functionality” (R24). The
incorrect solution impact is related to decrease review quality,
however, the perspective is of the code change containing a
bug in production rather than of the reviewing process.

Finally, there are four impacts of confusion related to the
developer. The most quoted impact is the decrease of self

55

confidence, either by the author, e.g., “I can’t be confident
my change is correct” (R38), or by the reviewer, e.g., “I feel
less confident about approving it” (R48). Another impact is
the developer giving up, abandoning a code change instead
of accounting for the reviewer’s comments, e.g., “other times
I just give up” (R14), or leave the project, e.g., “dissociated
myself a little from the codebase internally” (R14). We also
found emotions being triggered by confusion, such as anger
(e.g., “It pissed me off”, R3) and frustration (e.g., “Cannot be
an effective reviewer—can replace me with a lemur”, R40).
And finally, confusion can be contagious, e.g., “It often causes
confusion spreading to other reviewers” (R12).

RQ2 Summary: We identified 14 different impacts of
confusion in code reviews. The most common are delaying,
decrease of review quality, and additional discussions.
Some developers blindly approve the code change, regard-
less the correctness of it; other impacts include frustration,
abandonment and decreased confidence.

FE. RQ3. How Do Developers Cope with Confusion?

We found 13 topics describing the strategies developers
use to deal with confusion in code reviews. Four of them
are related to the review process. The most common is to
improve the organization of work, such as making clearer
commit messages, e.g., “Leave comments on the files with the
main changes” (R50). It is followed by spending more time
and delaying the code review, e.g., “I need to spend much
more time” (R13). Assigning other reviewers is also a strategy
adopted by developer, e.g., “Sometimes I completely defer to
other reviewers” (R48). Interestingly, blind approval is also a
strategy developers use to cope with confusion, i.e., it is not
just an impact, e.g., “assume the best, (of the change)” (R34).

Two strategies are related to the artifact. Developers make
the code change smaller, e.g., “Also I ask large changes to be

broken into smaller” (R31), and clearer, e.g., “Try to make
the actual code change clear” (R12). They also improve
the documentation by adding code comments, e.g., “A good
description in the commit message describing the bug and the
method used to fix the bug is also helpful for reviewers” (RS).

The dimension with the most quotes is related to the devel-
opers themselves. Requesting for information on the code re-
view tool itself is the most quoted among developers, e.g., “Put
comment and ask submitter to explain unclear points” (R15).
Developers also take the discussions off-line, i.e., using other
means to reach their peers, e.g., “schedule meetings” (R50)
or “ask in person” (R1). Providing and accepting suggestions
is also mentioned as a good way to cope with confusion. It
includes strategies such as being open minded to the comments
of their peers, e.g., “Being open to critical review comments”
(R12), and providing polite criticism, e.g., “Trying to be ’a
nice person’. Gently criticizing the code” (R3). The use of
criticism by developers in code reviews was also found by
Ebert et al. [19], but their study focused on the intention of
questions in code reviews. Disagreement resolution is also a
good strategy to cope with confusion, e.g., “I try fo explain the
reasoning behind the decisions/assumptions I made” (R31).

Regarding the link between the developer and the artifact,
there are three strategies developers use to cope with confu-
sion. Firstly, to study the code or the documentation, e.g., “If
forces me to dig deeper and learn more about the code module
to make sure that my understanding is correct (or wrong)”
(R12), and “Read requirements documentation” (R24). Sec-
ondly, to test the code change, e.g., “play with the code”
(R9). Finally, developers also use external sources to improve
their knowledge about the technology, e.g., “Sometimes further
research on the web [...]” (R25).

RQ3 Summary: We have identified 13 coping strategies.
Common strategies include information requests, improved
familiarity with the existing code, and off-line discussions.

V. DISCUSSION AND IMPLICATIONS

The main contribution of our study is the empirically-
driven comprehensive framework of reasons, impacts, and
coping strategies for confusion. Our study suggests practical,
actionable implications for the tool builders (Section V-B) as
well as insights and suggestions for researchers (Section V-C).

A. Discussion

Confusion is an inherent part of human problem-solving,
which normally arises from information and goal-oriented
assessment of situations [44], [45]. Evidence from psychology
research demonstrates that individuals engaged in a complex
cognitive task continually assimilate new information into
existing knowledge structures in order to achieve completion
of their tasks [46]. Any possible mismatch between expecta-
tions and (lack of) previous knowledge might be responsible
for confusion. Indeed, 92 cards (over 290) for reasons for
confusion are associated to ‘discussion’ about the artifact,
i.e., discussion of the solution: non-functional, strategy, and

56

correctness. Symmetrically, common coping strategies involve
information requests and off-line discussions.

Confusion might trigger in individuals the experience of
negative emotions, depending on the context, the amount of
mismatch between expectation and reality, and the extent
to which completion of tasks is threatened [47]. This is in
line with the observation of decreased confidence, abandon-
ment, and such emotions as frustration and anger, among
the impacts of confusion. Early detection of confusion [17]
becomes crucial for preventing contributors’ burnout and loss
of productivity [48]. Such situations might even cause the
abandonment of the project, which is undesirable as it even-
tually leads to undesired turnover; since developers focusing
on documentation are more susceptible to turnover than those
working on code [49], project abandonment is likely to ex-
acerbate lack of documentation further increasing confusion
within the project. A possible antidote to negative emotions,
identified as a coping strategy by the survey respondents, is
being open minded when providing and accepting suggestions.
This attitude is often mandated by codes of conducts adopted
by open source projects [50], requiring, e.g., to “gracefully
accept constructive criticism” and “be respectful of differing
viewpoints and experiences”. One should be aware, however,
that imposing such rules might lead to emotional labor [51].

B. Implications for Tool Builders

Code reviews are supported by such tools as GERRIT.
Currently the only feature of GERRIT that we can relate to
confusion reduction is flagging large code changes. Indeed,
large, complex changes are among the most popular reasons
for confusion in our framework. As a strategy to deal with
this issue, developers suggest to split big changes into smaller,
clearer ones. This is consistent with the earlier findings [11],
envisioning the emergence of tools enabling early detection of
splittable changes, i.e., before the pull request is submitted, in
order to both avoid spending additional time in identifying
such patches and asking the author re-work the change to
reduce its complexity and likelihood of the discussion [52].

Based on our results, further tool improvements can be
envisioned. We observe that the second most popular coping
strategy is to improve familiarity with existing code. The
burden of this task might be reduced if code review tools could
provide the task context [16]. Similarly, a summary of the
change [53], [54] could be beneficial to overcome confusion
due to lack of understanding of the change. Organization of
work can be improved by tools capable of automatically gener-
ating commit messages [55], [56], disentangling commits per-
forming multiple tasks [57] and combining multiple commits
performing one task [58]. Furthermore, information retrieval
tools able to understand written design discussions occurring
in pull requests [59] could be integrated into code review tools,
to extract rationale, implicit knowledge, and other contextual
information otherwise not available during the review process.
Integrating such information into the documentation might
prevent confusion due to a missing rationale, lack of context,
or doubt about necessity of a change.

Another reason for confusion is the difficulty in assess-
ing the impact of the change. Integration of change impact
analysis tools might be thus beneficial. Similarly, integration
of tools assessing the test coverage of a change might keep
developers from committing changes with low test coverage,
thus avoiding confusion due to lack of tests. Information about
test coverage could be also integrated in the pull request, i.e.,
by mean of badges as done by tools as COVERALLS.”

Developers also report off-line discussions as a strategy
to quickly resolve disagreement as well as ambiguities in
communicative intentions. This evidence is consistent with
findings from previous research by Pascarella ef al. [11], who
also envision the integration of synchronous communication
functions into code review tools to enable traceability of
decisions and explanation provided and allow their integration
into documentation for future reference.

Going beyond code review tools, developers experience
confusion in using issue tracking or version control systems.
Hence these tools can be improved to facilitate their usage.

C. Implications for Researchers

In our framework, observed reasons for confusion are far
more than coping strategies. Indeed, strategies are derived
by the analysis of developers’ self-report in the survey and
represent what they already do to deal with confusion and
uncertainty. Conversely, reasons for confusion are defined
based on the analysis of both survey responses and developers’
comments during code review. Of course, a symmetry is
observed for those reason-strategy couples addressing the same
cause of confusion, e.g., small, clear changes are offered as a
solution for confusion due to long, complex changes, informa-
tion requests can address difficulties in understanding the oth-
ers’ communicative intentions, lack of familiarity with existing
code is addressed by studying the code and its documentation
(improved familiarity with existing code). A significant amount
of reasons, though, are not addressed. Addressing these topics
with follow-up studies might be beneficial identifying what
could be done and how, in order to improve code review, in
addition to what is already done and reported by developers.

We observed that the assignment of other reviewers in the
discussion is either an impact and a strategy developers adopt
to deal with confusion. Thus, confusion can be beneficial as
contribute to decrease the number of bugs in the software
as more reviewers tend avoid bugs [2], [60]. Moreover, the
inclusion of more people in the code review increases their
awareness of the code change, i.e., confusion resolution con-
tributes to knowledge sharing. However, involving additional
reviewers induces additional workload, while reviewers ex-
pertise might already be scarce. Indeed, Ruangwan et al.have
observed that 16%-66% review requests have at least one
invited reviewer who did not respond to the invitation [61].
Moreover, involvement of additional reviewers might lead to
further disagreement between them, leading to inability to
complete the software engineering task [62]. This is why

10https://coveralls.io/

research should consider both early detection of confusion al-
leviating the need of involving additional reviewers, and better
recommendation of reviewers for a given code change [63].

We have observed that presence of confusion causes de-
velopers to move discussion off-line, i.e., outside the code
review tool. This finding is similar to earlier observations [64]
suggesting that despite the omnipresence of platforms such as
GERRIT and GITHUB fostering transparency of software de-
velopment, cases experienced as confusing sometimes remain
invisible. This finding might threaten validity of previously
published studies of code reviews that have been solely based
on mining digital trace data. More comprehensive research
methods should therefore be sought.

We have observed that the most popular coping strategy
is information requests. So far, little research was conducted
on information needs in code reviews [19], [11]. Ebert et
al. [19] show that almost half of the developers’ questions have
the intention to seek for some kind of information, such as
confirmation, information, rationale, clarification, and opinion.
The information needs expressed by developers during code
reviews [11] are closely related to the reasons for confusion in
Table II. Indeed, suitability of an alternative solution [11] is
related to the discussion of the solution strategy, splittable [11]
to long, complex change and specialized expertise to lack of
Sfamiliarity with technology. We believe, therefore, that confu-
sion may trigger both of the requests for information [19] and
the information needs [11]. Hence, we see a clear venue for
researchers to understand better both the information needed
during a code review and the ways developers aim at obtaining
it. Using this understanding one should try to automatize
supplying the relevant information to resolve confusion.

VI. THREATS TO VALIDITY

As any empirical study, our work is subject to several
threats of validity. Construct validity is related to the relation
between the concept being studied and its operationalisation.
In particular, it is related to the risk of respondents misinter-
preting the survey questions. To reduce this risk we included
our own definition of confusion and requested the respondents
to confirm that they understood it. For the same reason, we
always anchored the frequency questions and adhered to well-
known survey design recommendations [26], [27], [28], [29].
Internal validity pertains to inferring conclusions from the
data collected. The card sorting adopted in our work is inher-
ently subjective because of the necessity to interpret text. To
reduce subjectivity every card sorting step has been carried out
by several researchers. Moreover, to assure the completeness
of the topics related to the reasons, impacts and confusion
coping strategies we conducted several survey iterations till the
data saturation has been achieved, and augmented the insights
from the surveys with those from the code review comments.
External validity is related to the generalizability of the
conclusions beyond the specific context of the study. Our first
survey targeted only a single project: ANDROID. However, the
second and the third ones targeted a general software developer
population. Statistical analysis has not revealed any differences

57

between the respondents of the different surveys suggesting
that the answers obtained are likely to reflect opinions of
the code review participants, in general. To complement the
surveys we consider 307 code review comments from GERRIT.
While the functionality of GERRIT is typical for most modern
code review tools, developers using more advanced code
review tools do not necessarily experience confusion in the
same way. For instance, COLLABORATOR!! supports custom
templates and checklists, that if properly configured might
require the change authors to indicate rationale of their change,
reducing the importance of “missing rationale” from Table II.

VII. RELATED WORK
A. Code Review

Code review has been the focus of a plethora of studies [2],
[9], [14], [65], [66], [67], [68], [69], [70], [43]. Bacchelli and
Bird [9] analyzed the expectations, outcomes, and challenges
of developers while conducting code reviews at MICROSOFT.
They found that the developers’ top motivations in code
reviews are to find defects, but the most common outcome
is actually code improvement, and the main challenge of
code review is understanding the patch set. Tao er al. [14]
investigated how the understanding of patch sets affects the
development process and show that the most important infor-
mation for understanding the code review is the rationale of
the code change. Bavota and Russo [2] show that code changes
that were not reviewed have over two times more chances of
introducing defects than reviewed ones, and the reviewed code
changes have a substantially higher readability when compared
to the ones not reviewed. Kononenko et al. [65] investigated
the quality of code reviews and found that 54% of the reviewed
changes introduced defects in the system. Hentschel et al. [66]
provided evidence for increased effectiveness when a symbolic
execution tree view is used during code reviews. Pascarella et
al. [11] investigated, by analyzing code review comments,
what information reviewers need to perform a proper code
review. They found seven high-level information needs, such
as the correct understanding of the code change, and rationale.

B. Confusion

Confusion has been studied before, also in relation with
complex cognitive tasks [18], [46]. Approaches to automatic
identification of confusion have been recently developed,
based on natural language processing [72], [73], [17]. Yang et
al. [72] used textual content of comments from a forum and
its clickstream data to automatically identify posts that express
confusion. Their model to identify confusion comprises ques-
tions, users’ click patterns, and users’ linguistic features based
on LIWC!? words. Jean et al. [73] proposed an approach to
detect uncertain expressions based on the statistical analysis
of syntactic and lexical features. Ebert er al. [17] assessed
the feasibility of automatic recognition of confusion in code
review comments based on linguistic features. They assessed

https://smartbear.com/product/collaborator/overview/
Zhttps://liwe. wpengine.com

58

the performance of several classifiers based on supervised
training, using a gold standard of 800 comments manually
labeled as indicating or not a developer’s confusion.

Confusion-related phenomena have been recently investi-
gated in code reviews. Ram et al. [74] aimed to obtain
an empirical understanding of what makes a code change
easier to review. They found that reviewability is affected
by several factors, such as the change description, size, and
coherent commit history. Barik et al. [75] conducted an eye
tracking study to understand how developers use compiler
error messages. They found that the difficulty experienced
by developers while reading error messages is a significant
predictor of task correctness. Gopstein et al. [76] introduced
the term atom of confusion which is the smallest code pattern
that can reliably cause confusion in a developer. Through
a controlled experiment with developers, they studied the
prevalence and significance of the atoms of confusion in
real projects. They report a strong correlation between these
confusing patterns and bug-fix commits, as well as a tendency
for confusing patterns to be eventually commented.

To the best of our knowledge, this is the first study that aims
at building a comprehensive framework of what make devel-
opers confused during code reviews, their impacts and what
strategies do developers implement to overcome confusion.

VIII. CONCLUSIONS

We built a comprehensive framework for confusion in
code reviews including its reasons, impacts, and the coping
strategies adopted by developers. We used a concurrent tri-
angulation strategy combining a developer’s survey and the
analysis of code review comments. We found 30 reasons
for confusion, with the most common ones being missing
rationale, discussion of the solution: non-functional, and lack
of familiarity with existing code. Among the 14 impacts of
confusion, the prevalent are delaying, decrease of review
quality, and additional discussions. Finally, developers employ
13 strategies to cope with confusion, such as information
requests, and off-line discussions.

Our study has several implications for both tool builders
and researchers. Code review tools could be improved by
integrating information that can reduce confusion, e.g., related
to rationale, test coverage or impact of the change. Researchers
should investigate possible relations between confusion and
information needs, as well as between confusion and migration
of code review discussions to off-line channels.

ACKNOWLEDGMENTS

This research was partially funded by CNPq/Brazil (304755
/2014-1, 406308/2016-0, 465614/2014-0), CAPES/Brazil
(PDSE-88881.132399/2016-01), FACEPE/Brazil (APQ-0839-
1.03/14, 0388-1.03/14, 0791-1.03/13), and by the project
“EmoQuest”, funded by the Italian Ministry for Education,
University and Research under the SIR program. We are very
grateful to Tianyu Liu, Weslley Torres and Wellington Oliveira
for their help with the card sorting.

[1]
[2]
[3]
[4]
[5]

[6]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

REFERENCES

Y. Tao and S. Kim, “Partitioning composite code changes to facilitate
code review,” in MSR. IEEE, 2015, pp. 180-190.

G. Bavota and B. Russo, “Four eyes are better than two: On the impact
of code reviews on software quality,” in /ICSME, 2015, pp. 81-90.

B. Boehm and V. R. Basili, “Top 10 list [software development],”
Computer, vol. 34, no. 1, pp. 135-137, 2001.

M. V. Mintyld and C. Lassenius, “What types of defects are really
discovered in code reviews?” TSE, vol. 35, no. 3, pp. 430-448, 2009.
M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri, “Helping developers
help themselves: Automatic decomposition of code review changesets,”
in ICSE. IEEE, 2015, pp. 134-144.

J. Cohen, S. Teleki, and E. Brown, Best Kept Secrets of Peer Code
Review. Smart Bear Inc., 2006.

S. MclIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical
study of the impact of modern code review practices on software
quality,” ESE, pp. 1-44, 2015.

T. Pangsakulyanont, P. Thongtanunam, D. Port, and H. lida, “Assessing
MCR discussion usefulness using semantic similarity,” in Empirical
Software Engineering in Practice (IWESEP), 2014 6th International
Workshop on, Nov 2014, pp. 49-54.

A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in /ICSE. IEEE, 2013, pp. 712-721.

R. Morales, S. Mclntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects,”
in 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), March 2015, pp. 171-180.

L. Pascarella, D. Spadini, F. Palomba, M. Bruntik, and A. Bacchelli, “In-
formation needs in contemporary code review,” to appear in Proceedings
of the ACM Conference on Computer Supported Cooperative Work, ser.
CSCW 18, 2018.

M. Greiler, “On to code review: Lessons learned @ microsoft,”
2016, keynote for QUATIC 2016 - the 10th International
Conference on the Quality of Information and Communication
Technology. [Online]. Available: https:/pt.slideshare.net/mgreiler/
on-to-code-review-lessons-learned- at-microsoft

A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process
aspects and social dynamics of contemporary code review: Insights from
open source development and industrial practice at microsoft,” IEEE
Transactions on Software Engineering, vol. 43, no. 1, pp. 56-75, Jan
2017.

Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: An exploratory study in industry,”
in FSE. ACM, 2012, pp. 51:1-51:11.

A. Sutherland and G. Venolia, “Can peer code reviews be exploited for
later information needs?” in ICSE-Companion, 2009, pp. 259-262.

T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in /ICSE. New York, NY, USA:
ACM, 2006, pp. 492-501.

F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion detection
in code reviews,” in ICSME, 2017, pp. 549-553.

S. D’Mello and A. Graesser, “Confusion and its dynamics during device
comprehension with breakdown scenarios,” Acta Psychologica, vol. 151,
pp. 106-116, 2014.

F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Communicative
intention in code review questions,” in ICSME, 2018.

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, Selecting
Empirical Methods for Software Engineering Research. London:
Springer London, 2008, pp. 285-311. [Online]. Available: https:
//doi.org/10.1007/978-1-84800-044-5_11

M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Syst. J., vol. 15, no. 3, pp. 182-211, Sep. 1976.
[Online]. Available: http://dx.doi.org/10.1147/sj.153.0182

E. S. Raymond, The Cathedral and the Bazaar, 1st ed., T. O’Reilly, Ed.
Sebastopol, CA, USA: O’Reilly & Associates, Inc., 1999.

W. E Tichy, “Rcs - a system for version control,” Software: Practice
and Experience, vol. 15, pp. 637-654, 1985.

B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. New York, NY: Aldine de Gruyter,
1967.

K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research: A critical review and guidelines,” in /CSE, May
2016, pp. 120-131.

59

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

R. M. Groves, F. J. Fowler, M. P. Couper, J. M. Lepkowski, E. Singer,
and R. Tourangeau, Survey Methodology, 2nd ed. Wiley, 2009.

B. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,” in Guide
to Advanced Empirical Software Engineering, F. Shull, J. Singer, and
D. I. K. Sjoberg, Eds., 2008, pp. 63-92.

J. Singer and N. G. Vinson, “Ethical issues in empirical studies of
software engineering,” [EEE Transactions on Software Engineering,
vol. 28, no. 12, pp. 1171-1180, Dec 2002.

C. M. Steele and J. Aronson, “Stereotype threat and the intellectual test
performance of african americans.” Journal of personality and social
psychology, vol. 69 5, pp. 797-811, 1995.

W. H. Foddy, Constructing questions for interviews and questionnaires:
theory and practice in social research. ~Cambridge University Press
Cambridge, UK ; New York, NY, USA, 1993.

T. Zimmermann, “Card-sorting: From text to themes,” in Perspectives
on Data Science for Software Engineering, T. Menzies, L. Williams,
and T. Zimmermann, Eds. Boston: Morgan Kaufmann, 2016, pp.
137 — 141. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780128042069000271

D. Finfgeld-Connett, “Use of content analysis to conduct knowledge-
building and theory-generating qualitative systematic reviews,”
Qualitative Research, vol. 14, no. 3, pp. 341-352, 2014. [Online].
Available: https://doi.org/10.1177/1468794113481790

P. Lenberg, R. Feldt, L. G. W. Tengberg, 1. Tidefors, and
D. Graziotin, “Behavioral software engineering - guidelines for
qualitative studies,” CoRR, vol. abs/1712.08341, 2017. [Online].
Available: http://arxiv.org/abs/1712.08341

K. R. Clarke, “Non-parametric multivariate analysis of changes in
community structure,” Australian Journal of Ecology, vol. 18, pp. 117-
143, 1993.

M. J. Anderson, “A new method for non-parametric multivariate
analysis of variance,” Austral Ecology, vol. 26, no. 1, pp. 32-46,
2001. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1111/j.1442-9993.2001.01070.pp.x

B. H. McArdle and M. J. Anderson, “Fitting multivariate models to
community data: A comment on distance-based redundancy analysis,”
Ecology, vol. 82, no. 1, pp. 290-297, 2001.

F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, “Mining version histories for detecting code smells,” IEEE
Transactions on Software Engineering, vol. 41, no. 5, pp. 462-489, May
2015.

B. Vasilescu, V. Filkov, and A. Serebrenik, “Perceptions of diversity on
git hub: A user survey,” in 2015 IEEE/ACM 8th International Workshop
on Cooperative and Human Aspects of Software Engineering, May 2015,
pp. 50-56.

B. Vasilescu, D. Posnett, B. Ray, M. G. J. van den Brand,
A. Serebrenik, P. Devanbu, and V. Filkov, “Gender and tenure diversity
in github teams,” in Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, ser. CHI ’15. New
York, NY, USA: ACM, 2015, pp. 3789-3798. [Online]. Available:
http://doi.acm.org/10.1145/2702123.2702549

H. S. Qiu, A. Nolte, A. Brown, A. Serebrenik, and B. Vasilescu, “Going
farther together: The impact of social capital on sustained participation
in open source,” in /CSE. IEEE, 2019.

F. Palomba, D. A. Tamburri, A. Serebrenik, A. Zaidman, F. A.
Fontana, and R. Oliveto, “How do community smells influence code
smells?” in Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, ser. ICSE *18. New
York, NY, USA: ACM, 2018, pp. 240-241. [Online]. Available:
http://doi.acm.org/10.1145/3183440.3194950

A. Lee, J. C. Carver, and A. Bosu, “Understanding the impressions,
motivations, and barriers of one time code contributors to FLOSS
projects: a survey,” in Proceedings of the 39th International Conference
on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-
28, 2017, S. Uchitel, A. Orso, and M. P. Robillard, Eds. IEEE / ACM,
2017, pp. 187-197.

P. van Wesel, B. Lin, G. Robles, and A. Serebrenik, “Reviewing career
paths of the openstack developers,” in ICSME. IEEE Computer Society,
2017, pp. 544-548.

G. Mandler, Mind and Body: Psychology of Emotion and Stress. W.W.
Norton and Company, New York, 1984.
——, Interruption (discrepancy) theory: review and extensions. Wiley,

Chichester, 1990, pp. 13-32.

[46]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

S. D’Mello, B. Lehman, R. Pekrun, and A. Graesser, “Confusion can
be beneficial for learning,” Learning and Instruction, vol. 29, pp. 153 —
170, 2014.

N. Stein and L. Levine, Making sense out of emotion.
Hillsdale, NJ, 1991, pp. 295-322.

M. Mintyld, B. Adams, G. Destefanis, D. Graziotin, and M. Ortu,
“Mining valence, arousal, and dominance: Possibilities for detecting
burnout and productivity?” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR ’16. New
York, NY, USA: ACM, 2016, pp. 247-258. [Online]. Available:
http://doi.acm.org/10.1145/2901739.2901752

B. Lin, G. Robles, and A. Serebrenik, “Developer turnover in
global, industrial open source projects: Insights from applying survival

Erlbaum,

analysis,” in Proceedings of the 12th International Conference
on Global Software Engineering, ser. ICGSE ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 66-75. [Online]. Available:

https://doi.org/10.1109/ICGSE.2017.11

P. Tourani, B. Adams, and A. Serebrenik, “Code of conduct in open
source projects,” in 2017 IEEE 24th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), Feb 2017, pp.
24-33.

A. Serebrenik, “Emotional labor of software engineers,” in Proceedings
of the 16th edition of the BElgian-NEtherlands software eVOLution sym-
posium, Antwerp, Belgium, December 4-5, 2017., ser. CEUR Workshop
Proceedings, S. Demeyer, A. Parsai, G. Laghari, and B. van Bladel, Eds.,
vol. 2047. CEUR-WS.org, 2017, pp. 1-6.

P. Thongtanunam, S. Mclntosh, A. E. Hassan, and H. Iida,
“Review participation in modern code review - an empirical study
of the android, qt, and openstack projects,” Empirical Software
Engineering, vol. 22, no. 2, pp. 768-817, 2017. [Online]. Available:
https://doi.org/10.1007/s10664-016-9452-6

S. Panichella, “Summarization techniques for code, change, testing,
and user feedback (invited paper),” in IEEE Workshop on Validation,
Analysis and Evolution of Software Tests, March 2018, pp. 1-5.

P. C. Rigby and M. D. Storey, “Understanding broadcast based peer
review on open source software projects,” in /CSE, R. N. Taylor, H. C.
Gall, and N. Medvidovic, Eds. ACM, 2011, pp. 541-550.

M. Linares-Vasquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk,
“Changescribe: A tool for automatically generating commit messages,”
in Proceedings of the 37th International Conference on Software Engi-
neering, vol. 2. Piscataway, NJ, USA: IEEE Press, 2015, pp. 709-712.
Y. Huang, Q. Zheng, X. Chen, Y. Xiong, Z. Liu, and X. Luo, “Mining
version control system for automatically generating commit comment,”
in Proceedings of the 11th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 414-423. [Online]. Available:
https://doi.org/10.1109/ESEM.2017.56

M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and S. Ducasse, “Untan-
gling fine-grained code changes,” in 22nd IEEE International Confer-
ence on Software Analysis, Evolution, and Reengineering, SANER 2015,
Montreal, QC, Canada, March 2-6, 2015, Y. Guéhéneuc, B. Adams, and
A. Serebrenik, Eds. IEEE Computer Society, 2015, pp. 341-350.

R. Arima, Y. Higo, and S. Kusumoto, “A study on inappropriately
partitioned commits: How much and what kinds of ip commits in
java projects?” in Proceedings of the 15th International Conference
on Mining Software Repositories. New York, NY, USA: ACM, 2018,
pp. 336-340. [Online]. Available: http://doi.acm.org/10.1145/3196398.
3196406

G. Viviani, C. Janik-Jones, M. Famelis, and G. C. Murphy, “The
structure of software design discussions,” in Proceedings of the 11th
International Workshop on Cooperative and Human Aspects of Software

60

[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
2018, pp. 104-107.

S. Mclntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact
of code review coverage and code review participation on software
quality: A case study of the qt, vtk, and itk projects,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 192-201. [Online].
Available: http://doi.acm.org/10.1145/2597073.2597076

S. Ruangwan, P. Thongtanunam, A. Thara, and K. Matsumoto, “The
impact of human factors on the participation decision of reviewers
in modern code review,” Empirical Software Engineering, Sep 2018.

[Online]. Available: https://doi.org/10.1007/s10664-018-9646- 1
F. Palomba, D. A. Tamburri, F. A. Fontana, R. Oliveto, A. Zaidman, and

A. Serebrenik, “Beyond technical aspects: How do community smells
influence the intensity of code smells?” IEEE Transactions on Software
Engineering, pp. 1-1, 2019.

P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Tida,
and K. ichi Matsumoto, “Who should review my code? a file location-
based code-reviewer recommendation approach for modern code re-
view,” in 2015 IEEE 22nd International Conference on Software Analy-
sis, Evolution, and Reengineering (SANER), March 2015, pp. 141-150.
J. Aranda and G. Venolia, “The secret life of bugs: Going past the
errors and omissions in software repositories,” in /CSE. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 298-308.

0. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey,
“Investigating code review quality: Do people and participation matter?”
in ICSME, 2015, pp. 111-120.

M. Hentschel, R. Hihnle, and R. Bubel, “Can formal methods improve
the efficiency of code reviews?” in IFM. Springer, 2016, pp. 3—19.
M. Mukadam, C. Bird, and P. C. Rigby, “Gerrit software code review
data from android,” in MSR. IEEE, 2013, pp. 45-48.

K. Hamasaki, R. G. Kula, N. Yoshida, A. E. C. Cruz, K. Fujiwara, and
H. Iida, “Who does what during a code review? datasets of oss peer
review repositories,” in MSR. 1EEE, 2013, pp. 49-52.

P. Thongtanunam, X. Yang, N. Yoshida, R. G. Kula, A. E. C. Cruz,
K. Fujiwara, and H. lida, “Reda: A web-based visualization tool for
analyzing modern code review dataset,” in ICSME, 2014, pp. 605-608.
X. Yang, R. G. Kula, N. Yoshida, and H. lida, “Mining the modern code
review repositories: A dataset of people, process and product,” in MSR.
ACM, 2016, pp. 460-463.

D. Yang, M. Wen, 1. Howley, R. Kraut, and C. Rose, “Exploring the
effect of confusion in discussion forums of massive open online courses,”
in ACM Conference on Learning @ Scale. ACM, 2015, pp. 121-130.
P-A. Jean, S. Harispe, S. Ranwez, P. Bellot, and J. Montmain, “Un-
certainty detection in natural language: A probabilistic model,” in
International Conference on Web Intelligence, Mining and Semantics.
New York, NY, USA: ACM, 2016, pp. 10:1-10:10.

A. Ram, A. Ashok Sawant, C. Marco, and A. Bacchelli, “What makes
a code change easier to review? an empirical investigation on code
change reviewability,” to appear in 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 18, 2018.

T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-Hill,
and C. Parnin, “Do developers read compiler error messages?”
in Proceedings of the 39th International Conference on Software
Engineering, ser. ICSE *17. Piscataway, NJ, USA: IEEE Press, 2017,
pp. 575-585. [Online]. Available: https://doi.org/10.1109/ICSE.2017.59
D. Gopstein, J. Tannacone, Y. Yan, L. DeLong, Y. Zhuang, M. K.-C.
Yeh, and J. Cappos, “Understanding misunderstandings in source code,”
in ESEC/FSE. New York, NY, USA: ACM, 2017, pp. 129-139.

