
From Transient Information to Persistent
Documentation: Enhancing Software Documentation

Felipe Ebert
Department of Mathematics and Computer Science

Eindhoven University of Technology (TU/e)
Eindhoven, The Netherlands

f.ebert@tue.nl

Abstract—Developers usually need to use different kinds of
tools in the software development process, e.g., version con-
trol systems, code review tools, and bug or issue tracking
systems. Some of those tools provide an enhanced approach
for developers to communicate, i.e., discussions are recorded in
the communication feature of those tools. There is important
information, i.e., discussions and decisions, registered by those
tools which are not propagated to the project documentation:
the transient information. Thus, this work investigates how to
improve the software documentation by making such transient
important information into persistent documentation as source
code comments. The results are relevant because they will aid
the comprehension of the source code not only during the
development process, but also in code reviews.

Index Terms—confusion, transient information, software doc-
umentation, development process

I. INTRODUCTION

The development process requires developers to use differ-
ent kinds of tools. For example, version control systems are
used to manage changes in the source code, code review tools
are used to verify the quality of the code changes by other team
members, bug tracking systems are used to report and track
bugs in the source code, and issue tracking systems are used to
report and manage issues in any artifact. Usually, these tools
also provide developers a means for communication, i.e., the
discussions among developers related to that specific artifact
are recorded within these tools. For instance, developers can
discuss a certain method in the code review tool, or a specific
issue design in the issue tracking system.

While all these tools improve the communication and the
development process, they also add a problem for the project
documentation. There are important discussions and decisions
being recorded by those tools (such as code review, or bug
and issue tracking systems) [1], [2] and they are transient
for the project, i.e., they are kept within the tool and do
not propagate further in the project artifacts. Such a scenario
can cause confusion in developers because they might not
be able to understand the source code they need to change
or review. For example, a code review in which the class
design was discussed and a decision was taken. Some time
later, a developer working on that same class might miss the
rationale, thus becoming confused. Thus, we believe that such
transient information which is relevant for the project should
become persistent documentation in the form of source code

comments, as they are permanent artifacts of the software
projects.

This paper describes a post-doctoral research proposal based
on my PhD thesis [3]. The background related to code review
is presented in Section II. Next, a synopsis of my PhD
dissertation is discussed by providing a summary of the gen-
eral research problem and pointing out its main contributions
(Section III). The actual research proposal is presented in
Section IV. Finally, the conclusions are presented in Section V.

II. CODE REVIEW

Code review is a technique of systematic examination of
code change, which can be conducted before or after the
change is integrated into the main code repository [4]. Code
changes submitted by a developer are reviewed by one or
more of their peers. It is an iterative process and can be
instantiated in different ways. As input, a code review receives
the original code change and the outcome is the reviewed
change, which might be either accepted or rejected. The
developer who wrote the code change is the author, and might
also be responsible for submitting the change for review. The
reviewers are responsible for assuring that the code change
is functionally correct, meets the performance requirements,
and follows the quality standards of the project. Code review
tools usually provide a set of common features: they show the
difference between the files (i.e., before and after the change)
and developers can either add general comments pertaining to
the entire change or pinpoint concerns or shortcomings about
a specific part of the change using inline comments.

Code reviews are an important practice for software quality
assurance [5]–[9]. Several open source projects, e.g., AN-
DROID, QT, and ECLIPSE, and companies, e.g., MICROSOFT,
ORACLE, and SAMSUNG, have already adopted code review
as part of their development process. Likewise, several studies
have also shown that code review can provide multiple benefits
in the development process [4], [10]–[13]. The main goals
of code reviews are to find bugs in the code change, and
verify whether the project guidelines and coding style are
being respected [4], [14]–[17]. Furthermore, code reviews help
to improve the quality of the code in production, find better
ways to implement the change, spread the knowledge about
the source code, and create awareness of the changes in the
project [4], [10]–[13].



III. UNDERSTANDING CONFUSION IN CODE REVIEWS

In this section, we briefly present a synopsis of my thesis.

A. Research Problem

Despite the benefits code reviews bring, they can incur
costs on software development projects, as they can delay the
merge of a code change in the repository and, consequently,
slowdown the overall development process [1], [18]. The time
invested by a developer in reviewing code is non-negligible [5]
and may take up to 10%–15% of the overall time invested
in software development activities [12], [17]. Furthermore,
performing a code review might not be such an easy task. In
fact, understanding the code change and its context is one of
the major issues reviewers face during code reviews [4], [12],
[19]–[21]. The merge of a code change in the repository can
be further delayed when reviewers experience difficulties in
understanding the change, i.e., when they are not certain of its
correctness, run-time behavior and impact on the system [4],
[12], [19]–[21].

We believe that confusion, i.e., a reviewer not being able to
understand something during the code review, can affect the
artifacts that developers produce and the way they work, and
hence, negatively impact the development process [4], [12],
[19]–[21]. For instance, the code review might take longer
than it should, the quality of the review might decrease, more
discussions might take place, or even the code change might
be blindly accepted or summarily rejected. As such, we believe
that a proper understanding of the phenomenon of confusion in
code reviews is a necessary starting point towards reducing the
cost of code reviews and enhancing the effectiveness of this
practice, thereby improving the overall development process.

In my PhD thesis, we tackle two important problems related
to confusion in code reviews. The first one is the lack of
knowledge as to how confusion influences and affects the
code review process. So far, the phenomenon of confusion in
code reviews was not well-understood by the community: what
confusion is, what the reasons and impacts of confusion are,
and how developers cope with it. Understanding confusion is
crucial for researchers studying the impact of affective aspects
of software development on the development process and on
software itself, as well as for development teams aiming to
reduce the negative consequences of code reviews, such as
the delay of the development process.

The second problem, the lack of tools for confusion identi-
fication in code reviews, stems from the lack of knowledge
about confusion. Such tools are important for identifying
developers experiencing confusion, and in designing interven-
tions to support them. The goal of my thesis is to mitigate
these two problems: the lack of knowledge about confusion in
code reviews, and the lack of tools for confusion identification.

B. Methodology

We conducted three different in-depth studies to address
the two problems described above. Firstly, we needed to
understand what confusion is. Thus, in our first study [22],
by researching studies from the field of Psychology, we

proposed a definition of confusion. Then, we explored machine
learning techniques in order to build an automated approach
for confusion identification, comprising two classifiers that can
automatically identify confusion in code review comments.

Subsequently, we focused on investigating the reasons for
confusion, its impacts, and the way developers cope with it [2].
We triangulated [23] data from a survey of 54 developers
with the manual analysis of 307 code review comments
manually labeled by the researchers as confusing: 156 are
general and 151 are inline comments. As result, we produced a
comprehensive model for confusion in context in code reviews
including 30 reasons, 14 impacts, and 13 coping strategies.

Finally, we deepened our focus further to investigate the
communicative intention of developers’ questions, i.e., the
talkative goal of the questions, as they are one of the causes
of confusion in code reviews [24]. Our findings suggest
that questions in code review serve diverse communicative
goals, e.g., requesting clarifications, discussing hypothetical
scenarios, and suggesting improvements.

C. Main Contributions

My PhD thesis offers several contributions. Most of them
provide new results and insights related to confusion in code
reviews. All the gold standard sets and classification models
are publicly available1 for research purposes [25].

• A confusion coding scheme, a gold standard set with code
review comments from ANDROID, labeled as confusion
and no confusion (comprising of 1,542 general and 1,190
inline comments), together with an automated approach
for detecting confusion in code review comments;

• A model of confusion in context, with the 30 reasons and
14 impacts of confusion in code reviews, as well as 13
strategies that developers adopt to cope with confusion;

• A series of practical and actionable suggestions to im-
prove code review tools;

• A classification of the communicative intentions ex-
pressed in the developers’ questions in code reviews and
its gold standard set.

D. Discussion

We believe the three studies of my PhD theses are innovative
as, to the best of our knowledge, there was no research on
those topics before it. To accomplish this work, we needed to
carry out a multi-disciplinary research, involving works from
different areas such as Software Engineering, Education, and
Psychology, in order to characterize what confusion means,
the ways it manifests itself, and how it can be identified.
For instance, one of the contributions of our work is a
consolidation of several different views in a taxonomy about
confusion. Although this taxonomy targets mainly the software
development area, it can be employed in other contexts.

Furthermore, the model of confusion in context reveals
causes and mitigation strategies that, as far as it was possible
to ascertain, are not studied in the literature. For example,

1https://github.com/felipeebert/confusion-in-code-reviews



as many situations of confusion are resolved through off-
line discussions that are not incorporated into the project’s
memory. In addition, it quantifies the prevalence of the causes
of confusion identified. The proposed classification may serve
as a basis for several new researches on code reviews.

Finally, the understanding of the communicative intention
of developers’ questions is important in scenarios where
communication occurs mainly via text and several nuances
of language are lost. It can also provide additional support to
increase the inclusion of neurodiverse developers, who may
have difficulty understanding this communicative intention,
e.g., individuals with autism or attention deficit hyperactivity
disorder (ADHD).

E. Lessons Learned

We obtained a low number of responses in the survey we
employed, even though we had sent emails with personalized
salutation to developers. Another issue we see now is that a
large number of the developers we sent the survey to were not
contributing to the project for a long period. Thus, we learned
that to get better response rates we should follow a more
personal approach when contacting respondents. For instance,
we plan to avoid such problem by using the firehouse method
when contacting developers for interviews. In this way, we
will reach developers just after they have submitted the code
changes, and all information related to it will probably be fresh
for them. Thus, we believe they will be more likely to accept
our interview invitation.

IV. RESEARCH PROPOSAL

The research proposal we envision is still related to con-
fusion during the development process. However, it has a bit
broader scope.

A. Context

Usually, developers use different channels for both com-
munication and coding, e.g., version control systems (such
as GIT), code review tools (such as GERRIT and GITHUB),
bug tracking systems (such as BUGZILLA), and issue tracking
systems (such as JIRA and GITHUB). On the one hand, all
those kinds of tools have provided great support for devel-
opers as they, for instance, facilitate developers contributing
to projects with branching and pull requests, and improve
their communication by centralizing the discussion of related
concerns, e.g., code reviews and issues. On the other hand, we
believe there is still a problem with the communication and
documentation in the development process: the discussions,
and possible relevant decisions made, among developers are
usually transient, i.e., they are recorded but only within each
tool. For example, if a code review has an important discussion
on why the code change has a certain design, it is likely that
rationale will remain only in the code review comment. The
same can happen with issue discussions. Thus, such relevant
and transient information will not be properly documented,
i.e., they will remain available only within each tool. We envi-
sion that such transient information should become persistent

within the project, e.g., by transforming them into source code
comments.

B. Research Goals

As shown by our model of confusion in context, several
factors related to documentation causes confusion: the most
prevalent one is missing rationale, but other factors are missing
documentation, and lack of context. Thus, we believe that one
step to reduce confusion and improve the development process
overall is by making important and transient information
persistent. Such approach can benefit developers in several
ways, e.g., a developer of a change will have “at hand” the
rationale of a design decision of a certain class so they will not
need to research or make questions about it, a reviewer will
be able to easily note that there was an specific issue with
an important discussion in the source code comment when
reviewing a code change, and mostly important, each relevant
information and decision about each part of the code will be
document as a source code comment near to that piece of
code.

Hence, the first goal of this proposal is to empirically
explore which pieces of transient information from different
tools, such as code review or issue tracker tools, are relevant
for developers and managers. We acknowledge this might be
a challenge, e.g., to decide how much, how often, and when
the information should be considered for documentation, but
we believe this an important step towards achieving our final
goal. Next, we need to be able to automatically identify such
important information. This comprises the second research
goal. Finally, the third goal is to use such information and
automatically generate source code comments to transform the
transient into persistent documentation.

As a final product of this research, we envision a bot that
could be integrated into the development process to reduce
confusion due to several factors and improve the documenta-
tion. For example, GITHUB already provides several different
kinds of bots which automatize several different processes.
One of them is the TODO Bot2 which creates an issue in the
project when the developer pushes a code change with the
tag “@todo”. As such, we believe that a similar bot could
be implemented to make important transient into persistent
documentation. Thus, this bot could suggest source code
comments for developers in the closure of their tasks, e.g.,
when they close a issue or finish a code review they would be
prompted with the suggestion. In this way, the developer could
approve, change, or reject the code comments suggested by the
bot, making this process semi-automated to avoid undesirable
information being documented. Hence, the developer will be
able to decide on how much of the information it should be
documented. Additionally, by making the suggestion of the
source code comments in the end of developers’ tasks, we
hope to improve the usefulness and accuracy of the comments,
as the discussion will probably be finished.

2https://github.com/probot/probot



For instance, consider a real scenario: the code review
318313 of ANDROID. We envision a bot suggesting the fol-
lowing source code comment “The dynamic section in the
current MIPS compiler is writable, so MIPS does not require
this exception now.” in the file linker.c as a response to the
reviewers question.

The initial research questions of this proposal are:

• RQ1: Which transient information is relevant enough to
become persistent documentation?

• RQ2: Which is the best approach to automatically iden-
tify such relevant information from different tools’ dis-
cussions (such as code review and issue tracker systems)?

C. Research Design

This proposal will require a mixed-method approach [23].
We plan to start with the dataset from our previous study [2]
which provides a classified set of code review comments and
their reasons for confusion. We will focus on the comments
with the reason for confusion related to documentation, e.g.,
missing rationale, lack of documentation, and lack of context.
Thus, we will survey developers which participated in those
code reviews and ask them which comments from the review
discussion they consider relevant enough to become persistent
documentation. Furthermore, we will also ask them where in
the source code they would like to have the comments. This
will create a initial gold standard set of relevant information
to be documented. In the same time, we plan to increase our
dataset of possible relevant information by manually labeling
new comments.

Furthermore, another approach we envisage is to use fire-
house research [26], [27] to conduct interviews with develop-
ers. This research method has such name due to the fact that
the research requires events to occur that cannot be induced
by the researchers themselves, i.e., we would literally sit in a
“firehouse” waiting for a “fire to be reported” — a code review
or issue submission in our case. This means that we would be
“listening” for those events, and we would “run to the scene”
after a new review or issue submitted, and we consider they
might contain important information. Through this method, we
will be able to interview developers within at most a few days
from the day they submitted a code change to be reviewed or
issue to be solved. Hence, we could get fresh feedback on their
reasoning about the relevant parts of the discussions, and also
where in the source code they would add that information.

The goal of the previous steps is to build a dataset labeled
with relevant information for the project. With that, we plan to
explore machine learning techniques in order to automatically
identify transient and important discussions which should
become persistent documentation. Furthermore, we also plan
to experiment deep learning techniques for such a goal, as it is
capable of learning from data that is unstructured or unlabeled.
By comparing those two approaches we aim at answering the
RQ2.

3https://android-review.googlesource.com/c/31831

Finally, the final step of this research will be the evaluation
of our tool with developers. We plan to build a prototype which
can accomplish this research goal and make an evaluation
with the end users. Such evaluation will require a controlled
experiment with developers and will assess the usefulness of
the suggestion of source code comments.

D. Related Work

Robillard et al. [28] envisioned a paradigm for developers
making queries and obtaining documentation on-demand. Pon-
zanelli et al. [29] presented a tool which automatically queries
STACK OVERFLOW discussions and recommends them to the
developer in the IDE. Our proposal is complementary for those
studies as we plan to suggest documentation (source code
comments) to be persisted for developers based on information
from different sources.

Traceability link recovery studies [30]–[32], which proposed
means to connect high-level (e.g., requirements) and low-
level artifacts (e.g., source code), will be considered to aid
linking discussion to code elements. Literature on discussion
summarization [33]–[35] will aid the suggestion of concise
comments. Research on identification of rationale [36], [37]
and detection of knowledge types in software artifacts [38],
[39] will provide insights on the kind of information to be
used on the source code comments.

E. Significance of the Research

We believe this research can bring new and important
insights about how and which transient information should
be documented as source code comments. Such research
will improve the project documentation as relevant pieces
of information, such as critical decisions from code review
comments, will remain persistent and easily accessible along
the whole development process. Additionally, developers can
benefit from having better documentation when either review-
ing or implementing new code changes, making the code
review process faster.

V. CONCLUSION

In this paper, we presented a short synopsis of my PhD
thesis by focusing on the research problem and the main con-
tributions. Based on the results of my PhD thesis, we propose
a new research with the ultimate goal of making transient, but
important, information persistent as source code comments.
We hope that it can contribute with several problems related to
the lack of documentation, rationale, and context, for instance.
Two research questions were proposed for the starting point,
but it of course can be re-evaluated during the course of the
research. In the end, we envision a bot that can automatically
identify and extract transient information and transform them
into proper documentation.

ACKNOWLEDGMENTS

I would like to thank my advisors, Prof. Fernando Castor
and Prof. Alexander Serebrenik, for all the support during my
doctoral period.



REFERENCES

[1] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and A. Bacchelli,
“Information needs in contemporary code review,” vol. 2, no. CSCW.
New York, NY, USA: ACM, Nov. 2018, pp. 135:1–135:27.

[2] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion in code
reviews: Reasons, impacts, and coping strategies,” in SANER, 2019, pp.
49–60.

[3] F. Ebert, “Understanding confusion in code reviews,” Ph.D. dissertation,
Federal University of Pernambuco, Recife, Brazil, 2019. [Online].
Available: https://felipeebert.github.io/post/phd-2019/phd-2019.pdf

[4] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in ICSE. Piscataway, NJ, USA: IEEE Press,
2013, pp. 712–721.

[5] Y. Tao and S. Kim, “Partitioning composite code changes to facilitate
code review,” in MSR. Piscataway, NJ, USA: IEEE Press, 2015, pp.
180–190.

[6] G. Bavota and B. Russo, “Four eyes are better than two: On the
impact of code reviews on software quality,” in 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME). Bremen,
Germany: IEEE Computer Society, Sept 2015, pp. 81–90.

[7] B. Boehm and V. R. Basili, “Top 10 list [software development],”
Computer, vol. 34, no. 1, pp. 135–137, Jan 2001.

[8] M. V. MÄntylÄ and C. Lassenius, “What types of defects are really
discovered in code reviews?” TSE, vol. 35, no. 3, pp. 430–448, 2009.

[9] M. Barnett, C. Bird, J. A. Brunet, and S. K. Lahiri, “Helping
developers help themselves: Automatic decomposition of code review
changesets,” in Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ser. ICSE ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 134–144. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818773

[10] T. Pangsakulyanont, P. Thongtanunam, D. Port, and H. Iida, “Assessing
MCR discussion usefulness using semantic similarity,” in 2014 6th
International Workshop on Empirical Software Engineering in Practice.
Osaka, Japan: IEEE Computer Society, Nov 2014, pp. 49–54.

[11] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the Qt, VTK, and ITK projects,”
in 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). Montreal, QC, Canada: IEEE
Computer Society, March 2015, pp. 171–180.

[12] J. Cohen, S. Teleki, and E. Brown, Best Kept Secrets of Peer Code
Review. Massachusetts, EUA: Smart Bear Inc., 2006.

[13] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An
empirical study of the impact of modern code review practices
on software quality,” Empirical Software Engineering, vol. 21,
no. 5, pp. 2146–2189, Oct 2016. [Online]. Available: https:
//doi.org/10.1007/s10664-015-9381-9

[14] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Syst. J., vol. 15, no. 3, pp. 182–211, Sep. 1976.
[Online]. Available: http://dx.doi.org/10.1147/sj.153.0182

[15] K. E. Wiegers, Peer Reviews in Software: A Practical Guide. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[16] J. Wang, P. C. Shih, Y. Wu, and J. M. Carroll, “Comparative case
studies of open source software peer review practices,” Inf. Softw.
Technol., vol. 67, no. C, pp. 1–12, Nov. 2015. [Online]. Available:
https://doi.org/10.1016/j.infsof.2015.06.002

[17] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process
aspects and social dynamics of contemporary code review: Insights from
open source development and industrial practice at microsoft,” IEEE
Transactions on Software Engineering, vol. 43, no. 1, pp. 56–75, Jan
2017.

[18] M. Greiler, “On to code review: Lessons learned @ microsoft,”
2016, keynote for QUATIC 2016 - the 10th International
Conference on the Quality of Information and Communication
Technology. [Online]. Available: https://pt.slideshare.net/mgreiler/
on-to-code-review-lessons-learned-at-microsoft

[19] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: An exploratory study in industry,”
in Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, ser. FSE ’12. New
York, NY, USA: ACM, 2012, pp. 51:1–51:11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393656

[20] A. Sutherland and G. Venolia, “Can peer code reviews be exploited
for later information needs?” in 2009 31st International Conference on

Software Engineering - Companion Volume. Vancouver, BC, Canada:
IEEE, May 2009, pp. 259–262.

[21] T. D. Latoza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in Proceedings of the 28th
International Conference on Software Engineering, ser. ICSE ’06.
New York, NY, USA: ACM, 2006, pp. 492–501. [Online]. Available:
http://doi.acm.org/10.1145/1134285.1134355

[22] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion detection
in code reviews,” in 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). Shanghai, China: IEEE Com-
puter Society, Sept 2017, pp. 549–553.

[23] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, Selecting
Empirical Methods for Software Engineering Research. London:
Springer London, 2008, pp. 285–311. [Online]. Available: https:
//doi.org/10.1007/978-1-84800-044-5 11

[24] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Communicative
intention in code review questions,” in The 34th IEEE International
Conference on Software Maintenance and Evolution (ICSME). Madrid,
Spain: IEEE Computer Society, Sept 2018, pp. 519–523.

[25] F. Ebert, “Material of the PhD thesis “Understanding Confusion
in Code Reviews”,” Feb 2019, permanent link: https://github.
com/felipeebert/confusion-in-code-reviews. [Online]. Available: https:
//doi.org/10.5281/zenodo.2541203

[26] E. M. Rogers, Diffusion of innovations, 5th ed. New York, NY [u.a.]:
Free Press, 08 2003.

[27] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, “The
design of bug fixes,” in 2013 35th International Conference on Software
Engineering (ICSE), 2013, pp. 332–341.

[28] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst,
M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vásquez, G. C.
Murphy, L. Moreno, D. Shepherd, and E. Wong, “On-demand developer
documentation,” in 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2017, pp. 479–483.

[29] L. Ponzanelli, G. Bavota, M. D. Penta, R. Oliveto, and M. Lanza,
“Prompter: A self-confident recommender system,” in 2014 IEEE In-
ternational Conference on Software Maintenance and Evolution, 2014,
pp. 577–580.

[30] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced soft-
ware traceability using deep learning techniques,” in 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), 2017,
pp. 3–14.

[31] K. Moran, D. N. Palacio, C. Bernal-Cárdenas, D. McCrystal, D. Poshy-
vanyk, C. Shenefiel, and J. Johnson, “Improving the effectiveness of
traceability link recovery using hierarchical bayesian networks,” 2020.

[32] J. M. Florez, “Automated fine-grained requirements-to-code traceabil-
ity link recovery,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
2019, pp. 222–225.

[33] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization
of bug reports,” IEEE Transactions on Software Engineering, vol. 40,
no. 4, pp. 366–380, 2014.

[34] N. Jha and A. Mahmoud, “Using frame semantics for classifying
and summarizing application store reviews,” Empirical Software
Engineering, vol. 23, no. 6, pp. 3734–3767, 2018. [Online]. Available:
https://doi.org/10.1007/s10664-018-9605-x

[35] L. Ponzanelli, A. Mocci, and M. Lanza, “Summarizing complex devel-
opment artifacts by mining heterogeneous data,” in Proceedings of the
12th Working Conference on Mining Software Repositories, ser. MSR
’15. IEEE Press, 2015, p. 401–405.

[36] G. Viviani, M. Famelis, X. Xia, C. Janik-Jones, and G. C. Murphy,
“Locating latent design information in developer discussions: A study
on pull requests,” IEEE Transactions on Software Engineering, pp. 1–1,
2019.

[37] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge, “How do
developers discuss rationale?” in 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
2018, pp. 357–369.

[38] W. Maalej and M. P. Robillard, “Patterns of knowledge in api reference
documentation,” IEEE Transactions on Software Engineering, vol. 39,
no. 9, pp. 1264–1282, 2013.

[39] D. Arya, W. Wang, J. L. C. Guo, and J. Cheng, “Analysis and detection
of information types of open source software issue discussions,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), 2019, pp. 454–464.


