
A Study on Developers’ Perceptions About
Exception Handling Bugs

Felipe Ebert and Fernando Castor
Informatics Center

Universidade Federal de Pernambuco
Recife, PE, Brazil

{fe, castor}@cin.ufpe.br

Abstract—Several studies argue that exception handling code
usually has poor quality and that it is commonly neglected
by developers. Moreover, it is said to be the least understood,
documented, and tested part of the implementation of a system.
However, there are very few studies that attempt to understand
developers’ perceptions about exception handling, in general, and
exception handling bugs, in particular. In this paper, we present
the results of a survey conducted with 154 developers that aims
to fill in this gap. According to the respondents of the survey,
exception handling code is in fact documented and tested infre-
quently. Also, many of the respondents have had to fix exception
handling bugs, in particular those caused by empty catch blocks
or exceptions caught unintentionally. The respondents believe
that exception handling bugs are more easily fixed than other
kinds of bugs. Also, we found out a significant difference in
the opinion of the respondents pertaining to the quality of the
exception handling code: more experienced developers tend to
believe that it is worse. We present a comprehensive classification
of exception handling bugs based on the study results.

Index Terms—exception handling; bugs; survey.

I. INTRODUCTION

Several modern object-oriented programming languages im-
plement exception handling. Nevertheless, developers tend to
focus on the normal behavior of the applications and deal with
error handling only during the system implementation, in an
ad hoc manner. This practice creates a proper situation for
the appearance of design faults (bugs) related to exception
handling. Several studies [1], [2], [3] argue that exception
handling code usually has poor quality and that it is commonly
neglected by developers.

There is no study that attempts to understand developers’
perceptions about exception handling bugs. In this paper, we
present the results from a survey we conducted asking 154
developers about their practices and perceptions regarding
exception handling bugs. To the best of our knowledge, this is
the largest study to date that aims to uncover what developers
think about exception handling.

Respondents of our survey believe that exception handling
bugs are more easily fixed than other kinds of bugs and also
that exception handling code is in fact documented and tested
infrequently. Also, most responses have claimed that their
use of exception handling stems mainly from an interest in
improving code quality. Nevertheless, according to them, or-
ganizations seldom have policies regarding the documentation
and testing of exception handling code.

There is also a significant difference in the opinion of
the respondents pertaining to the quality of the exception
handling code: more experienced developers tend to believe
that it is worse. Furthermore, most of them have at some point
fixed exception handling-related bugs. Common causes include
empty catch blocks and exceptions caught unintentionally.
Finally, based on the data we collected, we present a proposal
of classification of exception handling bugs.

II. METHODOLOGY

In this section we describe the methodology of this study.
It aims to answer four research questions:

• Do organizations and developers pay attention to excep-
tion handling?

• How commonplace are exception handling bugs?
• Are exception handling bugs harder to fix than other

bugs?
• What are the main causes of exception handling bugs?

What is an exception handling bug? There is no widely
accepted definition of exception handling bug. Our goal is to
study bugs where exception handling is associated with the
cause of the problem. Bugs in exception definition, exception
throwing, exception handling, exception propagation, excep-
tion documentation, and clean-up actions (finally blocks)
are all of interest. Therefore, an exception that is not thrown
when it should be according to the expected behavior of the
system is an exception handling bug. The same applies to a
catch block that captures exceptions that it should not.

On the other hand, if a program performs a division by
zero, that error will be trapped by the runtime system of the
language (in the case of Java and C#, among others) and
an exception will be thrown. The raising of the exception
in this case is not the cause of the problem. From a bug
fixing perspective, as soon as the bug is fixed, the part of
the code where the bug manifested will not necessarily have a
relationship with exception handling anymore. Therefore, we
do not consider this to be an exception handling bug.

Survey. The survey was designed according to the recom-
mendations of [4], [5] and our target population consists of
developers with some experience in Java. After defining all



the questions of the questionnaire, we obtained feedback iter-
atively and clarified and rephrased questions and explanations.
We had particular care in explaining what we meant by an
exception handling bug. Together with the instructions of
the questionnaire, we included some simple examples in an
attempt to clarify our intent. Table I presents a summary of
the questions of the survey. The complete list of questions as
well as all the responses to the survey are available at the
companion Web site1.

The survey was sent to two distinct groups of people. The
first one, with 96 responses, consisted mostly of Portuguese
speaking developers in Brazilian companies and universities.
The second group, with 58 responses, consisted of bug re-
porters and developers of Eclipse and Tomcat. We sent more
than 4000 emails to reporters of bugs in the repositories of
these two systems. In total we obtained 154 responses during
a period of 2 months.

III. WHAT DEVELOPERS SAY ABOUT EXCEPTION
HANDLING BUGS

The main goal of the survey is to understand developers’
perceptions about exception handling bugs. It is known that
non-trivial systems usually have bugs that are difficult to
find, stemming from complex control flow and overly general
catch blocks [6] and from I/O operations [7]. However, even
though the perceptions of developers about exception handling
in general have been studied, at least on a small scale [3], to
the best of our knowledge there are no studies that attempt to
understand how developers regard exception handling bugs.

Respondents had on average between 7 and 10 years of
software development experience (question 1). Most of them
are currently working on medium-sized projects ranging be-
tween 50 and 100KLoC (question 2). Most respondents have
developed systems using at least three different programming
languages (question 3). In the remainder of this section we
discuss the main findings of the survey based on the four
research questions presented in Section II.

Do organizations and developers pay attention to excep-
tion handling? The survey included five questions (4, 5, 9,
18 and 19) whose goal is to determine whether developers
worry about exception handling when they are not directly
implementing the system, e.g., designing, testing, etc. For
question 5, only 27% of the developers answered “yes”. In
a similar vein, 30% said that there are specific tests for
exception handling code in their organization (question 9).
And for question 4, 61% of the respondents said that none to
little importance is given to the documentation of exception
handling. Moreover, just 16% said that much or very much
importance is given to exception handling documentation.

For question 18, about 40% of the respondents consider
that the quality of exception handling code ranges between
good and very good. Surprisingly, only 14% of the respondents
consider that it is bad or very bad. This result correlates with
developer experience. We found that the more experienced a

1Address: https://sites.google.com/a/cin.ufpe.br/eh-bugs/

respondent, the greater his/her tendency to consider the quality
of exception handling code to be bad with the Student’s T-test
producing a p-value of 0.02478.

Inspired by the work of Shah et al. [3], we asked question
19. We provided them with a list of possible causes and
gave them the opportunity to suggest additional ones. Table II
presents the reasons more frequently cited by the respondents.
Most of the respondents said that creating ways to tolerate
faults and improving the quality of a functionality are the
main reasons to use exception handling. One of the survey
respondents provided a particularly interesting spontaneous
answer for this question:

“exception handling is part of code flow - not using ex-
ception handling for some arbitrary reason would be like
not using ‘if’ blocks, or not having your code compile.”

Only 17% of the respondents said they use exception han-
dling for debugging purposes. In contrast, in the work of Shah
et al. [3], which interviewed a group of 8 novice developers
and 7 experts, most of the novice developers claimed to
use exception handling mostly for debugging and because of
language requirements. Expert developers, on the other hand,
claimed that they use exception handling mainly to convey
understandable failure messages. In contrast, in our study
the most experienced and the least experienced respondents
coincided in terms of both the most often cited reasons and
the least often cited reasons (Table II).

Based on previous work discussing the problems with
checked exceptions in Java [8], we expected a larger percent-
age of respondents to mention “language requirement” as a
reason for using exceptions. Moreover, only 21% use excep-
tion handling because of organizational policies. This result
and the previously discussed ones pertaining to testing and
documentation suggest that organizations do not pay attention
to exception handling, even though developers do. Finally, it is
interesting to note that the 3 respondents who claimed not to
use exception handling have professionally worked only with
languages that implement exception handling and all of them
have professionally worked with Java.

Developer experience does not seem to make a difference in
the main reasons for the use of exception handling. For both
the least experienced (until 5 years of development experience)
and the most experienced (10+ years) respondents, improving
the quality of a feature and creating ways to tolerate faults are
the most common reasons to use of exception handling. Also,
for both groups, organization policies and the need to debug
the code are the least often cited reasons.

TABLE II
WHY DO DEVELOPERS USE EXCEPTION HANDLING

To create ways to tolerate faults 66%
To improve the quality of a functionality 63%
Importance of exception handling 53%
Language requirement 43%
Organizational policies 21%
To debug a specific part of the code 17%
Does not use exception handling 2%

How commonplace are exception handling bugs? To assess



TABLE I
SUMMARY OF SURVEY QUESTIONS

Experience 1. For how long have you been a Java developer?
2. What is the approximate size of the project you are currently working on (LoC estimate)?
3. Which programming languages have you professionally worked with?

Context 4. In the design phase of your projects, what importance is given to the documentation of exception handling?
Documentation 5. Are there any specifications, documented policies or standards that are part of your organization’s culture related to

the implementation of error handling?
6. How often are bugs related to exception handling reported at your organization?
7. How often are bugs reported at your organization?
8. Does your organization use any tool for reporting and keeping track of bugs?

Testing 9. Are there specific tests for the exception handling code in your organization?
Bugs 10. How often do you find bugs related to exception handling?

11. How often do you find bugs that are not related to exception handling?
12. Estimate the percentage of bugs related to exception handling code in your projects
13. Have you ever needed to fix bugs related to exception handling?
14. If you answered yes to question 13, please describe some of these situations
15. Select the main causes of bugs related to exception handling you have ever needed to fix, analyze or have found documented
16. What is the average level of difficulty to fix bugs related to exception handling?
17. What is the average level of difficulty to fix other bugs that are not related to exception handling?
18. What is your opinion about the quality of exception handling code in your projects compared to other parts of the code
19. Why do you use exception handling in your projects?

how commonplace developers believe exception handling bugs
to be, we asked them questions 10 and 11. The answers were
given in a scale comprising: “never”, “rarely”, “sometimes”,
“most of the time” and “always”. We put the answers in a
numeric scale and used Student’s T-test to check whether the
answers are significantly different. According to the respon-
dents, exception handling bugs are less frequently found than
other bugs. We obtained a p-value of less than 0.0001. We also
asked them to estimate the percentage of exception handling
bugs in their projects (question 12). The mean estimate was
9.79% and the median was 5%.

Complementarily, we presented the respondents with the
questions 6 and 7. Most of the respondents answered that
exception handling bugs are reported “sometimes” (question
6) and other bugs are reported “most of the times” (question
7). The answers for the two questions differ significantly with
a p-value of less than 0.0001.

Are exception handling bugs harder to fix than other
bugs? Our study revealed that respondents consider exception
handling bugs easier to correct than other types of bugs. 43%
of the respondents consider exception handling bugs to be easy
or very easy to fix (question 16). In sharp contrast, only 7%
of the respondents say the same about other kinds of bugs
(question 17). The answers for questions 16 and 17 were given
in a scale comprising: “very easy”, “easy”, “medium”, “hard”
and “very hard”. We put the answers in a numeric scale. Then
we employed the T-test to analyze whether the answers for
the difficulty of fixing exception handling and other bugs are
significantly different. We found a p-value of less than 0.0001,
thus, according to the respondents, exception handling bugs
are easier to fix than other bugs.

What are the main causes of exception handling bugs? To
uncover the main causes of exception handling bugs according
to the survey respondents, we posed three questions (13, 14
and 15). Question 15 directly asked them about the main
causes. The respondents were allowed to select zero or more
causes from a list and could also suggest additional ones. The

most commonly cited cause for exception handling bugs was
the “lack of a handler that should exist”. Followed by the
causes “no exception thrown in a situation of a known error”
and “programming error in the catch block”.

To better understand developer perceptions about the causes
of exception handling bugs, we asked questions 13 and 14.
83% of the respondents have had to fix an exception handling
bug at some point (question 13) and 113 out of 154 survey
respondents answered the latter question (question 14). The
answers varied widely and many of them refer to specific
technologies, frameworks and applications. Out of the 113, 19
had to fix bugs caused by empty catch blocks and 16 have
fixed bugs stemming from exceptions caught unintentionally.
The final result of this question is the exception handling bug
classification presented in Table III.

TABLE III
EXCEPTION HANDLING BUGS CLASSIFICATION.

1. Lack of a handler that should exist
2. No exception thrown in a situation of a known error
3. Programming error in the catch block
4. Programming error in the finally block
5. Exception is caught unintentionally
6. Catch block where only a finally would be appropriate
7. Exception that should not have been thrown
8. Wrong encapsulation of exception cause
9. Wrong exception thrown
10. Lack of a finally block that should exist
11. Error in the exception assertion

There are diametrically different opinions on the subject of
empty catch blocks. Even though a number of respondents
consider them to be sources of bugs, some survey respondents
seem to disagree:

“I’m also an Eclipse committer (on Platform/UI). On 4.2
we’ve changed how parts (e.g., editors and views) are
rendered. Our new system silently swallows otherwise-
uncaught exceptions. Tracing what happens when an Ed-
itorPart or ViewPart throw an uncaught exception is a
teensy bit annoying.”

The citation above shows that the respondent does not want
to know about problems in some parts of the system and



swallows exceptions to achieve that goal.

IV. THREATS TO VALIDITY

Internal Validity. Our survey was conducted with an online
and self-administered questionnaire. It is possible that respon-
dents may have misunderstood the definition of exception
handling bug and answered the questions based on a different
understanding meaning. We tried to reduce the probability of
this occurring by providing a clear definition of exception han-
dling bug and some simple examples in the survey instructions.

External Validity. Our survey involved 154 respondents.
This number is small and limits the generalizability of the
results. Nonetheless, respondents of the survey came from
different professional and cultural backgrounds. Furthermore,
the largest study to date on the viewpoints of developers
about exception handling [3] involved only 15 respondents
(they were interviewed, instead of responding to a survey).
Therefore, from a comprehensiveness standpoint, we can say
that our study is an improvement over the current state-of-the-
art.

Construct Validity. Our survey might not have covered all
questions that we could have been asked of the respondents.
Nonetheless, the final questionnaire was the result of several
discussions between the authors, one of them a specialist in
exception handling, and with a number of software developers
and academics. Moreover, we run at least two small pilot
studies before finally making the questionnaire public.

V. RELATED WORK

The study most strongly related to ours was conducted by
Shah et al. [3]. It involved 8 novice and 7 expert software
developers and had the goal of understanding their viewpoints
on exception handling. The authors conducted semi-structured
interviews with developers and the results show that novice
developers neglect exception handling until there is an error
or until they are forced to address the problem due to language
requirements. Furthermore, they do not like being forced by
the language to use exception handling constructs. In contrast,
the experienced developers think that exception handling is a
very important part of development.

Marinescu [9] and Sawadpong et al. [10] analyzed bug
reports from Eclipse. Marinescu [9] analyzed the defect-
proneness of classes that use exception handling. Her study
revealed that classes that throw or handle exceptions are indeed
more defect-prone than others classes. Sawadpong et al. [10]
aimed to determine if the usage of exception handling is
relatively risky by analyzing the defect densities of exception
handling code and the overall source code. They discovered
that exception handling defect density of exception handling
constructs is approximately three times higher than overall
defect density.

None of the two aforementioned studies have also accounted
for the perceptions of developers about exception handling
bugs. Furthermore, none of them analyzes issues such as
whether exception handling bugs are easier to fix nor what
are their causes.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a study on exception handling bugs
based on a survey with software developers and researchers.
The results show that exception handling code is not docu-
mented and tested frequently and also that developers assume
that fixing exception handling bugs is easier than fixing other
bugs. Also, developers claim that they use exception handling
mainly to improve the quality of the systems they produce
and also more experienced developers tend to believe that the
quality of exception handling code is worse.

We also present a comprehensive classification of exception
handling bugs based on the study results. The results of this
study emphasize that the views of developers and organizations
about exception handling bugs are in conflict. To improve the
quality of software systems, these views must be reconciled
so that exception handling code can receive more attention.
The presented classification of exception handling bugs can
provide assistance in that task, e.g., by working as a checklist
for code inspections or a guide to the design of test cases.

In the future, we plan to conduct interviews with developers
since very useful information in our study came from sponta-
neous answers provided by the respondents of the survey. Also,
we are currently analyzing bug reports from two real systems
so that we can compare what developers say and what they
do in fact, when it comes to exception handling bugs.

VII. ACKNOWLEDGEMENTS

We would like to thank all respondents of the survey
that took some precious time to answer our questionnaire.
We also would like to thank the anonymous referees, who
helped to improve this paper. Fernando is supported by CNPq
(306619/2011-3), FACEPE (APQ-1367-1.03/12), and by INES
(CNPq 573964/2008-4 and FACEPE APQ-1037- 1.03/08).

REFERENCES

[1] F. Cristian, “Exception handling,” in Dependability of Resilient Com-
puters. Blackwell Science, 1989, pp. 68–97.

[2] D. Reimer and H. Srinivasan, “Analysing exception usage in large
java applications,” in Proceedings of ECOOP Workshop on Exception
Handling in Object-Oriented Systems, July 2003, pp. 10–19.

[3] H. Shah, C. Gorg, and M. Harrold, “Understanding exception handling:
Viewpoints of novices and experts,” Software Engineering, IEEE Trans-
actions on, vol. 36, no. 2, pp. 150–161, 2010.

[4] R. M. Groves, F. J. Fowler, M. P. Couper, J. M. Lepkowski, E. Singer,
and R. Tourangeau, Survey Methodology, 2nd ed. Wiley, 2009.

[5] B. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,” in Guide
to Advanced Empirical Software Engineering, F. Shull, J. Singer, and
D. I. K. Sjoberg, Eds., 2008, pp. 63–92.

[6] M. Robillard and G. Murphy, “Static analysis to support the evolution of
exception structure in object-oriented systems,” ACM TOSEM, vol. 12,
no. 2, pp. 191–221, April 2003.

[7] P. Zhang and S. G. Elbaum, “Amplifying tests to validate exception
handling code,” in Proc. of the 34th ICSE, June 2012.

[8] B. Cabral and P. Marques, “Exception handling: a field study in java
and .net,” in Proc. of the 21st ECOOP. Springer-Verlag, 2007, pp.
151–175.

[9] C. Marinescu, “Are the classes that use exceptions defect prone?”
in Proceedings of the 12th International Workshop on Principles of
Software Evolution, September 2011, pp. 56–60.

[10] P. Sawadpong, E. B. Allen, and B. J. Williams, “Exception handling
defects: An empirical study,” 9th IEEE International Symposium on
High-Assurance Systems Engineering, pp. 90–97, October 2012.


