
“When the Code becomes a Crime Scene”
Towards Dark Web Threat Intelligence with

Software Quality Metrics
G. Cascavilla∗, G. Catolino†, F. Ebert† D.A. Tamburri∗, WJ van den Heuvel†

∗JADS - TU/e Eindhoven University, The Netherlands
†JADS - Tilburg University, The Netherlands

{n(ame).surname}@jads.nl

Abstract—The increasing growth of illegal online activities
in the so-called dark web—that is, the hidden collective of
internet sites only accessible by a specialized web browsers—has
challenged law enforcement agencies in recent years with sparse
research efforts to help. For example, research has been devoted
to supporting law enforcement by employing Natural Language
Processing (NLP) to detect illegal activities on the dark web and
build models for their classification. However, current approaches
strongly rely upon the linguistic characteristics used to train the
models, e.g., language semantics, which threatens their gener-
alizability. To overcome this limitation, we tackle the problem
of predicting illegal and criminal activities—a process defined
as threat intelligence—on the dark web from a complementary
perspective—that of dark web code maintenance and evolution—
and propose a novel approach that uses software quality metrics
and dark website appearance parameters instead of linguistic
characteristics. We performed a preliminary empirical study on
10.367 web pages and collected more than 40 code metrics and
website parameters using sonarqube. Results show an accuracy
of up to 82% for predicting the three types of illegal activities
(i.e., suspicious, normal, and unknown) and 66% for detecting
26 specific illegal activities, such as drugs or weapons trafficking.
We deem our results can influence the current trends in detecting
illegal activities on the dark web and put forward a completely
novel research avenue toward dealing with this problem from a
software maintenance and evolution perspective.

Index Terms—Software Code metrics, Dark Web, Software
Code Quality, Machine Learning

I. INTRODUCTION

The dark web is the well-known hidden, fishy, and dan-
gerous side of the internet where illegal trades take place
daily [1]: it hosts almost every type of illegal material, from
weapons trafficking, to exchange of every type of drug up
until pedo-pornography [2]. To access such a hidden area
of the internet, users can employ The Onion Routing engine
(TOR), a specialised browser1 that creates a privacy-preserving
network where websites are not indexed, and where users
can keep their identities anonymous. On the one hand, the
threat intelligence research community is collaborating with
law enforcement agencies to help detect and automatically
categorize illicit activities from the dark web [3]–[7]. On
the other hand, most of the proposed approaches harness
Natural Language Processing techniques, which are connected

1https://www.torproject.org/

to language characteristics, implying poor generalizability,
e.g., one approach cannot be suitable for every context.

At this point, we argue a simple fact concerning dark web
pages: they constitute a theatre wherefore software becomes
the stage of illicit activity by-design, but remain primarily
software, nonetheless. For this reason, dark web pages must
evolve and must be developed/maintained like typical soft-
ware systems. Like other software systems (e.g., other web
portals) dark web pages can be analyzed from a software
engineering (SE) maintenance and evolution perspective [8],
e.g., exploiting website characteristics, source code metrics
and bugs, software quality indicators and more [9], [10]. Our
conjecture regards exploiting metrics related to measuring the
quality and the evolution of software, e.g., LOC for classifying
illegal activities on dark web pages together with website
appearance parameters e.g., min words in a sentence.

The contribution of this work is twofold: i) perform a sem-
inal study that investigates how source code maintenance and
evolution metrics can be used as predictors for illicit activities
of dark web applications, ii) provide the first approach that
gathers dark web threat intelligence page using source code
quality metrics and website appearance parameters regardless
of its language.

We perform an empirical study on 10.367 web pages and
collect 40+ code metrics and website parameters using sonar-
qube. Then, we build two prediction models for detecting illicit
activities of dark web pages considering two different target
variables. The first one consists of 26 categories corresponding
to various illicit activities, e.g., drugs. The latter reflects 3
categories, namely suspicious, unknown and normal.

To address the aforementioned study, we formulate the
following research questions:

RQ1: To what extent can online illegal activities be
classified based on source code metrics and website
appearance parameters?

To address RQ1, we analyzed whether source code metrics
and website appearance parameters are important for the clas-
sification of illicit online activities, analyzing which features
are more relevant compared to others.



RQ2: Which classifier outperform when classifying illicit
online activities?

To address RQ2, we analyzed the performance of the 4 main
classifiers in Machine-Learning (ML), i.e., SVMs, decision-
tree learning, regression modelling; subsequently we compare
their prediction accuracy.

Our preliminary results show that our approach reaches an
accuracy of 82% for predicting high granularity illegal activ-
ities, e.g., suspicious, while an accuracy of 66% in detecting
26 specific illegal activities, such as drugs or weapons.

These findings open a completely novel path of inquiry,
reflecting threat intelligence research over dark web pages
where code quality metrics—usually used in SE to address
maintenance and evolution—become first-class citizens to be
exploited in a completely different context, i.e., supporting
cyber-law enforcement.

II. RELATED WORK

The deep and dark web have already been extensively
studied from different perspectives. On the one side, some
studies analyze the quality and health of the dark web open-
source software community [2], [8]. For instance, Chen et al.
and Onyango et al. performed an investigation of dark web
open-source components from both software and community
perspectives but focusing on code vulnerabilities, dark web
content sentiment, and developers’ community health. On the
other side, most studies focus on profiling dark web markets
or provide new approaches for detecting illegal activities
[3], [11]. Celestini et al. [11] detected and analyzed the
criminal mechanisms representing the baseline of the illicit
drugs trade phenomenon. Ericsson et al. [12] investigated
how products are grouped in a dark web market. Nurmi et
al. [13] studied the seller’s reputation on the Finnish version
of Silk Road dark market. Differently, Al Nabki et al. [3]
proposed a classification approach to classify dark web pages
into different classes (e.g., violence or pornography) using
text mining techniques. Finally, Sabbah et al. [14] used a
hybridized term-weighting method to improve classification
based on text mining techniques on the dark web. The use
of textual content is the fil rouge that connects the mentioned
approaches. Conversely, Our approach aims at classifying web
pages without any text mining—and thus independent from
websites’ language—and using code quality indicators, paving
the way towards using software maintenance and evolution
metrics and indicators as basic dark web threat intelligence
analytics, e.g., to aid cyber-law enforcement.

III. METHODOLOGY

The goal of this study is to classify illicit activities of
a dark webpage using software quality metrics as well as
website appearance parameters. In this section, we describe
the methodology used for conducting our study2.

2Replication package of the study is available in the appendix [15].

1) Dataset: In the context of our study, we relied on a
dataset publicly available, i.e., Darknet Usage Text Address
(DUTA) [4]. DUTA contains the web pages and textual context
of 10.367 dark web pages manually-labelled. DUTA classifies
dark web pages in 26 individual threat and illegality classes,
e.g., human-trafficking, violence, drugs, abuse, etc.

Parameter Mean Std. Median

Blocker Violations 0 0 0
Bugs 52.0 960.3 1.0
Code Smells 36.2 756.0 0.0
Cognitive Complexity 0.0 0.0 0.0
Comment Lines 59.8 2174.4 0.0
Comment Lines Density 4.6 14.0 0.0
Confirmed Issues 0.0 0.0 0.0
File Complexity 1.0 0.011 1.0
Complexity 1.0 0.011 1.0
Critical Violations 0.0 0.0 0.0
Development Cost 31467.3 334226.3 2280.0
Duplicated Blocks 10.4 76.7 1.0
False Positive Issues 0.0 0.0 0.0
Files 1.0 0.0 1.0
Generated Lines 0.0 0.0 0.0
Generated Ncloc 0.0 0.0 0.0
Info Violations 0.026 1.64 0.0
Lines 1267.4 13887.7 94.0
Ncloc 1048.9 11140.9 76
Sqale Rating 1.09 0.46 1.0
Violations 88.1 1342.9 2.0
Open Issues 88.1 1342.9 2.0
Public Docm. API Density 100.0 0.0 100.0
Public Undocumented API 0.0 0.0 0.0
Reliability Rating 1.84 0.84 2.0
Reliability R.Effort 335.4 5555.9 5.0
Reopened Issued 0.0 0.0 0.0
Security Rating 0.0 0.0 0.0
Security R. Effort 0.0 0.0 0.0
Skipped Tests 0.0 0.0 0.0
Sqale Debt Ratio 145.2 12478.1 0.0
Sqale Index 253.7 5709.1 0.0
Test Errors 0.0 0.0 0.0
Duplicated Files 0.50 0.49 1.0
Duplicated Lines 780.5 6515.2 11.0
Duplicated Lines Density 43.8 47.3 1.5
Effort to Reach Maint. A 116.2 4588.7 0.0
Major Violations 47.3 812.2 0.0
Minor Violations 40.8 917.8 0.0
Number of Links 269.2 3470.8 6.0
Number of Words 2449.3 29956.8 96.0
Minimum Words in Sentence 5.86 65.5 1.0
Maximum Words in Sentence 56.8 152.7 32.0
Bitcoin 0.26 0.44 0.0

TABLE I: Statistics of numerical parameters.

2) Independent Variables: As mentioned in the introduc-
tion, we relied on source code metrics and website appearance
parameters; to extract them, we used Sonarqube3, which
is well known in the software maintenance and evolution
research and practice community. The tool extracts code
metrics e.g., LOC, technical debt information, e.g., code smell,
management and community metrics, e.g., effort, and webpage
parameters, e.g., number of words, based on raw HTML files.
We extracted 30 software code metrics, such as lines of code,
violations, and bugs and 16 website appearances like amount
of links found, the number of words and whether or not there
are bitcoin transactions on the webpage. These metrics provide
insights without being language-website dependent. In total,
we extracted 46 metrics for each dark web page. They are
shown in Table II. Table I shows some descriptive statistics
instead. However, some features, e.g., test errors, have a value
of 0 for every data point— see the mean and median—thus,

3https://www.sonarqube.org



leading to being useless for a prediction. Consequently, these
features have been discarded.

3) Target Variables: Our target variable concerns the pre-
diction of illicit activities. As mentioned in III-1, DUTA
dataset is already labelled. Indeed, it contains 26 labels corre-
sponding to different illicit activities, e.g., drugs. Although the
dataset is widely used, we know that it is always challenging
to face a multi-class prediction [4], [11], [14], for this reason,
we decided to build two different models with a different
granularity level of the target variable. The first model has 26
categories as the target variable. The second one, the clustering
result of the 26 labels in 3 main categories, namely suspicious,
unknown and normal. Suspicious are web pages that might
contain illegal activities. Normal are just ordinary web pages,
and unknown is a web page that is either down, empty or
locked. Table III shows the 26 categories and the corresponded
high granularity categorization.

4) Feature Engineering: After extracting the data, we ap-
plied some feature engineering steps. First, we analyzed out-
liers since they can exert a negative effect on the classification
process [16]. We used PyOd KNN’s model to detect them,
which determines the outlier scores based upon a selected
point nearest neighbor. The step is fundamental since could
improve data quality and decrease the chance of the classifiers
being influenced by possible outliers [16]. After removing
the outliers, we considered scaling our data (between 0 and
1) since we noticed that software code metrics and website
appearance parameters had different distributions.

5) Machine-Learning Techniques and Experimental Set-
tings: We used four classifiers, i.e., K-Nearest Neighbor
(KNN), Logistic Regression (LR), Support Vector Machines
(SVM), and Random Forest (RF). These classifiers have been
selected since they come from different ML families [17], thus
being a representable sample in the literature. We used the 80-
20 validation strategy, and the validation set was used only to
check the best-performing model. The training data have been
splitted using stratified k-fold cross-validation. We tested k=5
and k=10 based on previous studies [18], [19]. Furthermore,
we applied hyper-parameter tuning using gridsearch as shown
in Table IV); All the values are combined into a Cartesian
product. This means that every possible combination of hyper-
parameter values has been tested. Moreover, we applied an
iterative feature engineering approach, which means that we
experimented with and without balancing the data—applying
oversampling technique—and with and without normalizing
the data to optimize the result of the experiments. All of these
different models have been tested using the same training data.

A. Evaluation Metrics

To evaluate the performance, we relied on four well known
metrics, namely: accuracy, recall, precision, and F1-score.

IV. RESULTS AND FINDINGS

In this section, we discuss the results of our study, reporting
only the best models obtained.

Fig. 1: The 10 most important features.

1) Feature Importance: Figure 1 shows the 10 most im-
portant features using Random Forest as a classifier. It is
interesting to note that both website appearance (Number of
Lines, Number of Words, Maximum Words in Sentence and
Minimum Words in Sentence) and software metrics (Lines,
Ncloc, Development Cost, Duplicated Lines, Duplicated Lines
Density and Reliability Remediation Effort) appear in this list
of the 10 most relevant features. Furthermore, we can notice
that the features are not decreasing evenly. Some features have
roughly the same importance instead. Finally, this figure shows
how a dark web page cannot be classified solely on 1 or 2
features since much valuable information would go missing,
possibly hurting the classification accuracy.

2) Model Comparison: The resulting models are shown in
Table V and VI. Table V represents the results where the target
variable consists of the 26 different illicit activities, while
Table VI the high granularity categorization. Table represent
the best models obtained from testing 1.768 different setups
(variation in hyper-parameters, pre-processing, and target vari-
ables), as discussed in section III.

We notice that the performance varies in terms of scores
between each classifier. However, we are not surprised about
it due to the different nature of the classifiers. Furthermore,
we see that the performance sightly improves when scaling the
data. Netherverless, logistic regression is the worst classifier to
predict illicit activities—with different levels of granularity—
while the Random Forest algorithm outperformed in both. A
possible explanation behind these results can be attributed to
the nature of the Random Forest classifier; it is an ensemble
technique that allows the construction of several decision trees
with a subset of features, and the combination of the prediction
of the decision trees is performed by using majority voting.
Moreover, Random Forest implicitly applied feature selection,
thus possibly improving the results. In the following, the
resulted configuration given by gridsearch:

• 26 Categories: K(5), Max Depth(50), Number of Esti-
mation(1000), Scaling(Yes);

• 3 Categories: K(5), Max Depth(50), Number of Estima-
tion(200), Scaling(No).



Feature Name Description

skipped tests Number of skipped unit tests.
sqale dept ratio Ratio between the cost to develop the software and the cost to fix it. The Technical Debt Ratio formula is: Remediation cost / Development cost.
sqale index Effort to fix all maintainability issues. The measure is stored in minutes in the DB. An 8-hour day is assumed when values are shown in days.
test errors Number of unit tests that have failed.
duplicated files Number of files involved in duplications.
duplicated lines Number of lines involved in duplications.
duplicated lines density Density of duplication = Duplicated lines / Lines * 100
effort to reach maint. rating a Effort to fix all maintainability issues.
major violations A violation that might have a substantial impact on productivity. Ex: too complex methods, package cycles, etc.
minor violations A violation that might have a potential and minor impact on productivity. Ex: naming conventions, Finalizer does nothing but call superclass finalizer, etc.
number links The amount of outbounded links on a webpage.
number of words The amount of words on a webpage.
min words in sentence The minimum amount of words in a sentence on a webpage.
max words in sentence The maximum amount of words in a setence on a webpage.
bitcoin Boolean if there are bitcoin transaction available on a webpage.
dark web Check if it is an .onion webpage.
blocker violations A violation that is operational/security risk: This issue might make the whole application unstable in production. Ex: calling garbage collector, not closing

a socket, etc.
bugs Number of bugs.
code smells Number of code smells.
cognitive complexity How hard it is to understand the code’s control flow.
comment lines Number of lines containing either comment or commented-out code.
comment lines density Density of comment lines = Comment lines / (Lines of code + Comment lines) * 100
confirmed issues Number of issues whose status is Confirmed
file complexity It is the Cyclomatic Complexity calculated based on the number of paths through the code for a specific file.
complexity It is the complexity calculated based on the number of paths through the code. Whenever the control flow of a function splits, the complexity counter gets

incremented by one. Each function has a minimum complexity of 1. This calculation varies slightly by language because keywords and functionalities do.
critical violations A violation that is Operational/security risk: This issue might lead to an unexpected behavior in production without impacting the integrity of the whole

application. Ex: NullPointerException, badly caught exceptions, lack of unit tests, etc.
development cost The development cost to create the code.
duplicated blocks Number of duplicated blocks of lines. (at lest 100 successive and duplicated tokens spread over at least 10 lines of code)
false positive issues Number of false positive issues
files Number of files.
last commit date Date of last commit.
generated lines Number of lines generated.
generated ncloc Number of lines of code generated.
info violations A violations that is unknown or not yet well defined security risk or impact on productivity.
lines Number of physical lines (number of carriage returns).
ncloc Number of physical lines that contain at least one character which is neither a whitespace nor a tabulation nor part of a comment.
sqale rating Rating given to your project related to the value of your Technical Debt Ratio. The default Maintainability Rating grid is: A=0-0.05, B=0.06-0.1, C=0.11-0.20,

D=0.21-0.5, E=0.51-1
violations Number of violations.
open issues Number of issues whose status is Open
public documented api density Density of public documented API = (Public API - Public undocumented API) / Public API * 100
public undocumented api Public API without comments header.
reliability rating Rating for reliability.
reliability remediation effort Effort to fix all bug issues. The measure is stored in minutes in the DB. An 8-hour day is assumed when values are shown in days.
reopened issues Number of issues whose status is Reopened
security rating Rating for security.
security remediation effort Effort to fix all vulnerability issues. The measure is stored in minutes in the DB. An 8-hour day is assumed when values are shown in days.

TABLE II: A description of all features that have been extracted.

Class Amount Activity Type
Hosting 2096 Normal
Empty 1509 Unknown
Cryptocurrency 818 Normal
Down 785 Unknown
Locked 759 Unknown
Personal 545 Normal
Drugs 427 Suspicious
Counterfeit Credit-Cards 370 Suspicious
Social-Network 357 Normal
Services 319 Suspicious
Marketplace 244 Suspicious
Pornography 236 Suspicious
Forum 201 Suspicious
Hacking 197 Suspicious
Cryptolocker 170 Suspicious
Violence 85 Suspicious
Counterfeit Money 73 Suspicious
Counterfeit Personal-ID 56 Suspicious
Library 41 Normal
Casino 25 Normal
Religion 20 Normal
Leaked-Data 20 Normal
Fraud 19 Suspicious
Art 19 Normal
Politics 12 Normal
Human-Trafficking 4 Suspicious

TABLE III: Distribution of classes.

Model KNN LR SVM RF

Param # of K Solver Max iter Gamma C Max depth N estimators

Value 1,2,3,4 ’newton-cg’ 50, 100 0.00000001 0.001, 0.01 3,10, 50 10,20,30
5,6,7 ’lbfgs’ 300, 0.0000001 0.1, 1, 10, None 50, 100,

200,
8,9,10 ’sag’ 500, 0.000001 100,1000, 500,1000
12,14,16 1000 0.00001 10,000,

100,000
2000

18,20,25 0.0001, 0.001 1,000,000
30,40,50 0.01, 0.1, 1, 10,000,000

10, 100, 1,000 100,000,000
10,000 1,000,000,000

TABLE IV: Hyper-parameter values.

Classifier Scaling Recall Precision F1-score Accuracy
KNN Yes 0.532 0.529 0.529 53.171%
LR Yes 0.109 0.211 0.109 10.929%

SVM Yes 0.503 0.563 0.504 50.340%
RF Yes 0.660 0.671 0.661 65.968%

KNN No 0.519 0.527 0.522 51.925%
LR No 0.240 0.103 0.103 10.780%

SVM No 0.297 0.380 0.380 29.728%
RF No 0.663 0.673 0.664 66.251%

TABLE V: Results classifiers with 26 classes as target variable.

Classifier Scaling Recall Precision F1-score Accuracy
KNN Yes 0.702 0.714 0.706 70.232%
LR Yes 0.435 0.503 0.393 43.520%

SVM Yes 0.701 0.695 0.694 70.062%
RF Yes 0.817 0.818 0.822 81.664%

KNN No 0.681 0.688 0.683 68.081%
LR No 0.443 0.603 0.391 44.312%

SVM No 0.556 0.723 0.574 55.631%
RF No 0.802 0.807 0.804 80.192%

TABLE VI: Results classifiers with 3 classes as target variable.

Finally, there is a significant difference between the accu-
racy for the model with 26 classes and the one with 3 classes.
Indeed, while comparing the different scores for the various
classes, it is wise to keep the accuracy baseline in mind. The
baseline accuracy represents the accuracy got when a classifier
always predicts the majority class. For example, the baseline
accuracy of the first model (with 26 classes) is 23%, while the



other 50%. Consequently, we noticed that some classifiers are
valid, but Random Forest outperformed the baseline accuracy
by approximately 43% (26 classes) and 32% (three classes),
thus adding value as a predictor.

A. Findings

This study aimed to classify illicit activities of a dark web-
page based on software code metrics and website appearance
parameters. In the following, the findings achieved:

Finding of RQ1: The analysis showed how software
code metrics and website appearance parameters are cru-
cial for predicting a dark web page, thus leading our
approach to improving generalizability since it is not
language-website dependent. Both types of features have
predicting power and should therefore be considered when
classifying a dark web page.

Finding of RQ2: The Random Forest algorithm
outperforms the other classifiers. Indeed it performs better
for both the target variables predicted, i.e., the 26 and the
3 classes, respectively.

We can conclude that besides textual analysis, information
about source code, like code metrics, technical debt, and
website appearance, is novel and promising in detecting illicit
activities on the dark web with a reasonable accuracy.

B. Threats to Validity

Some threats can affect our study. The first one is related
to the extraction of the metrics. However, we relied on Sonar-
qube, a well-known tool considered reliable by the research
community. To ensure the reliability and reproducibility of
the results, we used the SKLEARN library for constructing our
models. Finally, our results are based on the DUTA dataset,
possibly avoiding the generalizability. We plan in the future
to extend the study by labeling new dark web pages.

V. CONCLUSION

This study provides a novel approach to classifying illicit
activities of dark web pages using software code metrics and
website appearance parameters. Results show that both are
crucial factors for predicting illicit activities. Thus, both have
predicting power and should be considered when classifying
a dark web page. Our approach showed how illegal online
activities could be classified with an accuracy of 81.664%
using Random Forest. In future work, we plan to improve
the dataset’s quality by crawling and labeling new pages and
analyzing additional characteristics of the source code.

VI. ACKNOWLEDGEMENT

We thank Martijn Keizer for the work done during his
master thesis. The work is supported by EU Twining DESTINI

project (857420), and, the Dutch Ministry of Justice and Safety
through the Regional Table Human Trafficking Region East
Brabant sponsored the project SENTINEL.

REFERENCES

[1] J. Sanchez and G. Griffin, “Who’s afraid of the dark? hype versus reality
on the dark web,” 2019. [Online]. Available: https://bit.ly/38gzdsk

[2] H. Chen, Dark web: Exploring and data mining the dark side of the
web. Springer Science & Business Media, 2011, vol. 30.

[3] M. W. Al Nabki, E. Fidalgo, E. Alegre, and I. de Paz, “Classifying illegal
activities on tor network based on web textual contents,” in Proceedings
of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers, 2017, pp. 35–43.

[4] M. W. Al-Nabki, E. Fidalgo, E. Alegre, and L. Fernández-Robles,
“Torank: Identifying the most influential suspicious domains in the tor
network,” Expert Systems with Applications, pp. 212–226, 2019.

[5] S. He, Y. He, and M. Li, “Classification of illegal activities on the
dark web,” ser. ICISS 2019. New York, NY, USA: Association for
Computing Machinery, 2019, p. 73–78.

[6] N. Tavabi, N. Bartley, A. Abeliuk, S. Soni, E. Ferrara, and K. Lerman,
“Characterizing activity on the deep and dark web,” in Companion
Proceedings of The 2019 World Wide Web Conference. Association
for Computing Machinery, 2019, p. 206–213.

[7] A. H. M. Alaidi, R. M. Al airaji, H. T. Alrikabi, I. A. Aljazaery, and
S. H. Abbood, “Dark web illegal activities crawling and classifying using
data mining techniques,” International Journal of Interactive Mobile
Technologies (iJIM), vol. 16, no. 10, p. pp. 122–139, May 2022.

[8] S. Onyango, E. Steenvoorden, J. Scholten, S. Jansen, P. Gregory,
P. Kruchten et al., “Assessing the health of the dark web: An analysis of
dark web open source software projects,” in Agile Processes in Software
Engineering and Extreme Programming–Workshops, vol. 426, no. 1.
Springer, Cham, 2021, pp. 125–134.

[9] A. Suali, S. Fauzi, M. Nasir, W. Sobri, and I. Raharjana, “Software qual-
ity measurement in software engineering project: A systematic literature
review,” Journal of Theoretical and Applied Information Technology,
vol. 97, no. 3, pp. 918–929, 2019.

[10] F. N. Colakoglu, A. Yazici, and A. Mishra, “Software product quality
metrics: A systematic mapping study,” IEEE Access, vol. 9, pp. 44 647–
44 670, 2021.

[11] A. Celestini, G. Me, and M. Mignone, “Tor marketplaces exploratory
data analysis: the drugs case,” in International Conference on Global
Security, Safety, and Sustainability. Springer, 2017, pp. 218–229.

[12] E. Marin, A. Diab, and P. Shakarian, “Product offerings in malicious
hacker markets,” in 2016 IEEE conference on intelligence and security
informatics (ISI). IEEE, 2016, pp. 187–189.

[13] J. Nurmi, T. Kaskela, J. Perälä, and A. Oksanen, “Seller’s reputation
and capacity on the illicit drug markets: 11-month study on the finnish
version of the silk road,” Drug and alcohol dependence, vol. 178, pp.
201–207, 2017.

[14] T. Sabbah, A. Selamat, M. H. Selamat, R. Ibrahim, and H. Fujita,
“Hybridized term-weighting method for dark web classification,” Neu-
rocomputing, vol. 173, pp. 1908–1926, 2016.

[15] anonymous. (2022) Appendix for paper “when the code
is the crime scene”. [Online]. Available: https://figshare.com/s/
45e98a78d2aa9f6e7f0f

[16] K. Kadota, D. Tominaga, Y. Akiyama, and K. Takahashi, “Detecting
outlying samples in microarray data: A critical assessment of the effect
of outliers on sample classification,” Chem-Bio Informatics Journal,
vol. 3, no. 1, pp. 30–45, 2003.

[17] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine
learning: A review of classification techniques,” Emerging artificial
intelligence applications in computer engineering, vol. 160, pp. 3–24,
2007.

[18] Y. Bengio and Y. Grandvalet, “No unbiased estimator of the variance of
k-fold cross-validation,” Journal of machine learning research, vol. 5,
no. Sep, pp. 1089–1105, 2004.

[19] J. D. Rodriguez, A. Perez, and J. A. Lozano, “Sensitivity analysis of k-
fold cross validation in prediction error estimation,” IEEE transactions
on pattern analysis and machine intelligence, vol. 32, no. 3, pp. 569–
575, 2009.


