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ABSTRACT

Code review is a technique of systematic examination of a code change. It is an impor-
tant practice for software quality assurance. The benefits of code reviews are well-known,
such as decreasing the number of defects, improving software quality, and knowledge
transfer. Nevertheless, they can also incur costs on software development projects as they
can delay the merge of a code change and, consequently, slow down the overall develop-
ment process. Furthermore, performing a code review might not be such an easy task,
it will probably require developers’ knowledge about the code change and the context of
the system. Hence, the merge of a code change can be further delayed if reviewers ex-
perience difficulties in understanding the change. In fact, understanding the code change
and its context is one of the main issues reviewers face during a code review. In this
thesis, we tackle two important problems related to confusion in code reviews: the lack
of knowledge in the research community about confusion in code reviews; and the lack of
tools for confusion identification in code review comments. In the first study, we address
the first problem: we create an understanding of what constitutes confusion by building
a definition of confusion, and a confusion coding scheme. Then, we manually annotate
several code review comments and build an automated approach for detecting confusion
to address the second problem. Our classifiers present a considerable performance on the
classification of confusion. Moreover, to improve the current understanding on confusion
in code reviews, we conduct a second study aiming at identifying the reasons for confu-
sion, its impacts, and how developers cope with confusion. As such, we re-annotate the
aforementioned code review comments and conduct a survey of developers. Based on our
findings, we provide a model of confusion in context with 30 reasons for confusion, 14
impacts, and 13 coping strategies. The most frequent reasons for confusion are: missing
rationale, and discussion of non-functional requirements of the solution. The most pop-
ular impacts of confusion are: the delay on the merge decision, and the decrease on the
review quality. The most common strategies developers adopt to cope with confusion are:
requesting information, and improving familiarity with existing code. During the former
studies, we observe that identification of confusion in questions is a challenging task and
that communicative intentions are one of the reasons for confusion. Hence, we decided to
conduct an in-depth analysis of the communicative intention of developers’ questions in
code reviews in the third study. We categorise 499 questions into 12 different categories
of intentions. Even though the majority of questions actually serve information seeking
goals, they still represent fewer than half of the annotated sample. These results suggest
that questions are actually used by developers in code review to serve a wider variety of
communicative purposes, including suggestions, requests for action, and criticism.

Keywords: Code Reviews. Confusion. Mining Software Repositories.



RESUMO

A revisão de código é uma técnica de verificação sistemática realizada em uma alter-
ação de código. Esta é uma importante prática para a garantia de qualidade de software.
Os benefícios das revisões de código são bem conhecidos, podemos citar, a redução no
número de defeitos, a melhora na qualidade do software e a transferência de conheci-
mento. Entretanto, as revisões de código também podem gerar custos em projetos de
desenvolvimento de software, pois, elas podem atrasar a integração da alteração e, conse-
quentemente, retardar o processo de desenvolvimento. Além disso, revisar código pode não
ser uma tarefa tão fácil, pois, provavelmente será exigido dos desenvolvedores o conheci-
mento sobre a alteração e o contexto do sistema. Assim, a integração desta alteração pode
ser ainda mais retardada caso os revisores enfrentem dificuldades em compreender a alter-
ação. De fato, entender uma alteração e o seu contexto é um dos principais problemas que
os revisores enfrentam durante uma revisão de código. Nesta tese, abordamos dois impor-
tantes problemas relacionados à confusão em revisões de código: a falta de conhecimento
na comunidade científica sobre confusão em revisões de código; e a falta de ferramen-
tas para a identificação de confusão em comentários de revisão de código. No primeiro
estudo, abordandamos o primeiro problema: criamos um entendimento sobre o que con-
stitui confusão através da construção de uma definição de confusão e de um esquema de
codificação de confusão. Em seguida, classificamos manualmente diversos comentários de
revisões de código e criamos uma abordagem automática para detectar confusão, para
abordar o segundo problema. Nossos classificadores apresentam performance considerável
para a classificação de confusão. Complementarmente, para melhorar o entendimento at-
ual sobre confusão em revisões de código, conduzimos um segundo estudo com o objetivo
de identificar as razões da confusão, seus impactos e como os desenvolvedores lidam ela.
Para isto, classificamos novamente os comentários de revisão de código e realizamos um
questionário com desenvolvedores. Com base em nossos resultados, desenvolvemos um
modelo de confusão em contexto com 30 razões para confusão, 14 impactos e 13 estraté-
gias. As principais razões de confusão são: motivação ausente da alteração e discussão dos
requisitos não funcionais da solução. Os principais impactos da confusão são: o atraso na
integração da alteração e a diminuição na qualidade da revisão. As estratégias mais co-
muns para lidar com a confusão são: solicitar informação e melhorar a familiaridade com
o código existente. Durante estes estudos, observamos que a identificação de confusão em
perguntas é uma tarefa desafiadora e que as intenções comunicativas são uma das razões
de confusão. Assim, decidimos realizar uma análise aprofundada da intenção comunicativa
das perguntas dos desenvolvedores em revisões de código em nosso terceiro estudo. Nós
categorizamos 499 perguntas em 12 diferentes categorias de intenções. Apesar da maioria
das perguntas atender aos objetivos de solicitação de informação, estas ainda representam
menos da metade das perguntas categorizadas. Estes resultados sugerem que as perguntas



são realmente usadas pelos desenvolvedores em revisões de código para atender a uma var-
iedade mais ampla de propósitos comunicativos, incluindo sugestões, solicitação de ações
e criticismo.

Palavras-chaves: Revisão de Código. Confusão. Mineração de Repositórios de Software.
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1 INTRODUCTION

Code review is a technique of systematic examination of code change, which can be con-
ducted before or after the change is integrated into the main code repository (BACCHELLI;

BIRD, 2013). Code changes submitted by a developer are reviewed by one or more of their
peers. This is why code reviews are also known as peer review or peer code review. For the
sake of simplicity, we use the term code review in this thesis.

Code review is an important practice for software quality assurance (TAO; KIM, 2015;
BAVOTA; RUSSO, 2015; BOEHM; BASILI, 2001; MÄNTYLÄ; LASSENIUS, 2009; BARNETT et

al., 2015). Several open source projects, e.g., Android1, Qt2, and Eclipse3, and com-
panies, e.g., Microsoft4, Oracle5, and Samsung6, have already adopted code review
as part of their development process. Likewise, several studies have also shown that code
review can provide multiple benefits in the development process (BACCHELLI; BIRD, 2013;
PANGSAKULYANONT et al., 2014; MORALES; MCINTOSH; KHOMH, 2015; COHEN; TELEKI;

BROWN, 2006; MCINTOSH et al., 2016).
The main goals of code reviews are to find bugs in the code change, and verify whether

the project guidelines and coding style are being respected (FAGAN, 1976; WIEGERS, 2002;
WANG et al., 2015; BACCHELLI; BIRD, 2013; BOSU et al., 2017). Furthermore, code reviews
help to improve the quality of the code on production, find better ways to implement the
change, spread the knowledge about the source code, and create awareness of the changes
in the project (BACCHELLI; BIRD, 2013; PANGSAKULYANONT et al., 2014; MORALES; MCIN-

TOSH; KHOMH, 2015; COHEN; TELEKI; BROWN, 2006; MCINTOSH et al., 2016).
Despite the benefits code reviews bring, they can incur costs on software development

projects, as they can delay the merge of a code change in the repository and, consequently,
slowdown the overall development process (PASCARELLA et al., 2018; GREILER, 2016). The
time invested by a developer in reviewing code is non-negligible (TAO; KIM, 2015) and may
take up to 10%–15% of the overall time invested in software development activities (BOSU

et al., 2017; COHEN; TELEKI; BROWN, 2006). Furthermore, performing a code review might
not be such an easy task. In fact, understanding the code change and its context is one
of the major issues reviewers face during code reviews (BACCHELLI; BIRD, 2013; COHEN;

TELEKI; BROWN, 2006; TAO et al., 2012; SUTHERLAND; VENOLIA, 2009; LATOZA; VENOLIA;

DELINE, 2006). The merge of a code change in the repository can be further delayed when
reviewers experience difficulties in understanding the change, i.e., when they are not
certain of its correctness, run-time behaviour and impact on the system (COHEN; TELEKI;
1 https://android-review.googlesource.com
2 https://codereview.qt-project.org
3 https://git.eclipse.org/r
4 https://queue.acm.org/detail.cfm?id=3292420
5 https://smartbear.com/product/collaborator/overview
6 https://www.perforce.com/case-studies/vcs/samsung
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BROWN, 2006; BACCHELLI; BIRD, 2013; TAO et al., 2012; SUTHERLAND; VENOLIA, 2009;
LATOZA; VENOLIA; DELINE, 2006).

We believe that confusion, i.e., a reviewer not being able to understand something
during the code review, can affect the artifacts that developers produce and the way they
work, and hence, negatively impact the development process (COHEN; TELEKI; BROWN,
2006; BACCHELLI; BIRD, 2013; TAO et al., 2012; SUTHERLAND; VENOLIA, 2009; LATOZA;

VENOLIA; DELINE, 2006). For instance, the code review might take longer than it should,
the quality of the review might decrease, more discussions might take place, or even the
code change might be blindly accepted or summarily rejected. As such, we believe that
a proper understanding of the phenomenon of confusion in code reviews is a necessary
starting point towards reducing the cost of code reviews and enhancing the effectiveness
of this practice, thereby improving the overall development process.

1.1 THE GOAL

In this thesis, we tackle two important problems related to confusion in code reviews. The
first one is the lack of knowledge as to how confusion influences and affects the code review
process. Currently, the phenomenon of confusion in code reviews is not well-understood
by the community: what confusion is, what the reasons and impacts of confusion are, and
how developers cope with it. Understanding confusion is crucial for researchers study-
ing the impact of affective aspects of software development on the development process
and on software itself, as well as for development teams aiming to reduce the negative
consequences of code reviews, such as the delay of the development process.

The second problem, the lack of tools for confusion identification in code reviews,
stems from the lack of knowledge about confusion. Such tools are important for identifying
developers experiencing confusion, and in designing interventions to support them. The
goal of this thesis is to mitigate these two problems: the lack of knowledge about confusion
in code reviews, and the lack of tools for confusion identification.

Firstly, we need to understand what confusion is. Thus, in our first study, we propose
a definition of confusion and create an automated approach for confusion identification,
comprising three classifiers that can automatically identify confusion in code review com-
ments. Subsequently, in the second study we focus on investigating the reasons for con-
fusion, its impacts, and the way developers cope with it. We collect and analyse the data
from surveys of developers and from code review comments. Lastly, in the third study, we
deepen our focus further to investigate the communicative intention of developers’ ques-
tions, i.e., the talkative goal of the questions, as they are one of the causes of confusion
in code reviews.

The three studies conducted in this thesis are represented according to the degree
of deepening in Figure 1. We start broadly with the confusion identification study, then
we deepen our study to understand the reasons, impacts, and coping strategies related



19

to confusion. Finally, we focus even in more depth on understanding the communicative
intentions of the questions in code reviews.

Confusion Detection 

Confusion in Context: 
reasons, impacts,  

and coping strategies 

Communicative  
Intentions  

of  
Questions 

Figure 1 – Diagram of the studies of this thesis.

1.2 THE CONTRIBUTIONS

This thesis offers several contributions. Most of them provide new results and insights
related to confusion in code reviews.

• A confusion coding scheme, together with an automated approach for
detecting confusion in code review comments. To the best of our knowledge,
this is the first study focused on confusion identification in code reviews. We provide
a scheme for coding confusion and an approach capable of identifying confusion in
developers’ comments in code reviews. We also provide a gold standard set with
code review comments from Android, labelled as confusion and no confusion,
comprising of 1,542 general and 1,190 inline comments.

• A model of confusion in context, with the reasons and impacts of con-
fusion in code reviews, as well as the strategies that developers adopt
to cope with confusion. To the best of our knowledge, this is the first study of
confusion in context. Following a concurrent triangulation strategy, we build a com-
prehensive confusion model with 30 reasons, 14 impacts, and 13 coping strategies.
We also provide a gold standard set collected from code review comments, and a se-
ries of surveys with the reasons, impacts, and coping strategies related to confusion
in code reviews.
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• A series of practical and actionable suggestions to improve code review
tools. Based on the results of our second study, we provide a series of implications
for tool builders to be able to improve code review tools.

• A classification of the communicative intentions expressed in the devel-
opers’ questions in code reviews. To the best of our knowledge, this is the first
study focusing on the intention of code review questions. We conduct an exploratory
qualitative case study of questions in code reviews. We categorise 499 questions into
12 different categories of communicative intentions, and propose three hypotheses
on the intentions of code review questions that should be confirmed or refuted by
follow-up studies. The gold standard set of questions with corresponding commu-
nicative intention labels is also provided.

All the gold standard sets and classification models are publicly available7 for research
purposes (EBERT, 2019).

1.3 ORGANISATION

The remainder of this work is organised as follows.

• Chapter 2 presents the background on code reviews. We also discuss general work
related to code reviews. Specific work related to each study is discussed within each
chapter.

• Chapter 3 introduces the confusion definition, the confusion coding scheme, and
the automated approach for detecting confusion in code review comments. It also
explains the data collection and gold standard sets building process, which served
all three studies conducted in this thesis.

• Chapter 4 presents a model of confusion in context, with the reasons for confusion,
its impacts, and how developers deal with it in code reviews.

• Chapter 5 shows the study on the communicative intentions of developers’ questions
in code reviews.

• Chapter 6 presents the final considerations and the future work of this thesis.

The main chapters of this thesis have been published at premier Software Engineering
conferences. Chapter 3 is an ICSME 2017 paper (EBERT et al., 2017) with an extended
version under preparation for a premier Software Engineering journal. Chapter 4 is the
distinguished award SANER 2019 paper (EBERT et al., 2019). Chapter 5 is an ICSME 2018
paper (EBERT et al., 2018). These chapters have been extended and revised while writing
7 https://github.com/felipeebert/confusion-in-code-reviews
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this thesis. Besides those papers directly related to this thesis, several papers have been
published at premier Software Engineering conferences and journals (EBERT; CASTOR;

SEREBRENIK, 2015; MOURA et al., 2015; REBOUÇAS et al., 2016).
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2 BACKGROUND

Code review is a widely employed practice in software quality assurance: developers in-
spect the code changes, before or after the changes are integrated into the main reposi-
tory (BACCHELLI; BIRD, 2013; BOSU et al., 2017). In this chapter, we start by presenting
a short history of code review in Section 2.1. The code review process is discussed in
Section 2.2. The general work related to code reviews is presented in Section 2.3. Finally,
we discuss confusion, uncertainty and lack of knowledge in Section 2.4.

2.1 A BRIEF HISTORY OF CODE REVIEWS

Formal code review was first defined by Fagan in 1976 as software inspections (FAGAN,
1976). Software inspection, the most formal type of code review (RIGBY; BIRD, 2013), is a
structured process for reviewing source code that relies on rigid roles and steps, with the
single goal of finding defects (FAGAN, 1976). Firstly, prior to inspection, the code change
should meet the predefined criteria. The inspection process follows these steps: planning,
overview, preparation, inspection meeting, reworking, and follow-up (FAGAN, 1976).

In the planning step, one of the experts acting as a moderator assigns other experts to
the roles of designer (responsible for producing the program design), coder/implementor
(responsible for translating the design into source code), and tester (responsible for writing
and testing the code change). Subsequently, the designer creates an inspection package
which determines what is going to be inspected, and meetings are scheduled. In the
inspection meeting, the code change is inspected for defects line-by-line. A written report
is created with all issues raised during the inspection, and it is addressed during the
reworking step. Finally, the moderator verifies whether all issues have been fixed in the
follow-up.

Notwithstanding the initial success of Fagan’s inspections with both the industry
and research, its formality brings several drawbacks. Indeed, the inspections are very
time consuming because the meetings need to be organised and the participants need
to do some preparation. Another disadvantage is the chance of turning the inspection
meeting into a political or social disaster (WIEGERS, 2002). Moreover, the formality of
the inspection does not fit well with agile development methods (MARTIN, 2003). As a
result, a more lightweight code review process with a better fit for test-driven and iterative
development processes started to become more popular (BAKER JR., 1997; BERNHART;

MAUCZKA; GRECHENIG, 2010).
Lightweight code review processes impose fewer formal requirements on the review

process and on its participants, are asynchronous, usually supported by tools, and less time
consuming. Such code reviews suit Open Source Software (OSS) development processes
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better, because of their open collaboration format (GUZZI et al., 2013; RIGBY et al., 2015;
RIGBY; BIRD, 2013). Indeed, OSS projects have been employing these lightweight code
reviews for a couple of decades. In particular, this practice became very popular with the
Linux1 operating system kernel, as documented by Raymond (RAYMOND, 1999). By now,
the majority of the largest and most successful OSS projects consider code review to be
the most important quality assurance practice (ASUNDI; JAYANT, 2007; NUROLAHZADE

et al., 2009; RIGBY et al., 2014).
Formalising this practice, Bacchelli and Bird (BACCHELLI; BIRD, 2013) defined the

lightweight code review process as a “modern code review”, which is a review that is
informal (as opposed to Fagan’s inspections), supported by code review tools, and occurs
regularly in practice. The focus of our study is on modern code reviews. We also use the
term code reviews as a synonym for modern code reviews and discuss code reviews in
further detail in Section 2.2.

2.2 THE CODE REVIEW PROCESS AND APPROACHES

Code review is an iterative process and can be instantiated in different ways. As input,
a code review receives the original code change and the outcome is the reviewed change,
which might be either accepted or rejected. The developer who wrote the code change
is the author, and might also be responsible for submitting the change for review. The
reviewer is responsible for assuring that the code change is functionally correct, meets the
performance requirements, and follows the quality standards of the project.

In general, there are two types of workflow for code reviews, depending on when the
review is conducted in the development process:

• Review-then-commit (pre-commit): the code is reviewed before it is integrated
into the main repository of the Version Control System (VCS) (TICHY, 1985);

• Commit-then-review (post-commit): the code is reviewed after it is integrated
into the main repository of the VCS (TICHY, 1985);

Since the most common type of code review is review-then-commit (RIGBY, 2011), it
will be the focus of this thesis. We present an example of the code review process within
this approach in Figure 2.

It starts with the author submitting the code change (1). The reviewers are notified
and start reviewing the code change (2). They should check and verify it based on several
quality criteria, such as correctness, adherence to the project guidelines, and conventions.
If the reviewers believe that the code change does not fulfil those requirements, they ask
the author to fix it, or to submit a new one (3). Thus, the author needs to work on
the code change and submit it again (1) for review (2). When the reviewers are satisfied
1 www.linux.org
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Figure 2 – Code review process.

that the code change is suitable, it is integrated into the code repository (4). However, if
reviewers’ quality criteria are not achieved by the code change, it is rejected, and the code
review is abandoned (5). There might be several iterations before the reviewers decide to
end the process (1 to 3), where the code change might be accepted (i.e., it is merged into
the main repository), or rejected (i.e., it is discarded).

The code review process is, most usually, implemented by means of one of the fol-
lowing four approaches: email pass-around, over-the-shoulder, pair programming, and
tool-assisted (COHEN; TELEKI; BROWN, 2006; SVOBODA, 2014; RIGBY et al., 2015). We
discuss each one of these approaches in more detail in the reminder of this section.

2.2.1 Email Pass-Around

This is a traditional code review approach used in large OSS projects (RIGBY; BIRD,
2013; WANG et al., 2015; RIGBY et al., 2015). In this approach, when the author is finished
working on the task, they are responsible for sending the code change to the appropriate
colleagues via email. Next, each reviewer can reply to that email with comments, sug-
gestions or questions, and, in the end, this email thread is the review, and the author
needs to be up-to-date with all the emails. Email pass-around is much simpler than Fa-
gan’s inspections (FAGAN, 1976) for example, as reviewers no longer need to be physically
present in the same space at the same time (SVOBODA, 2014). This facilitates involving
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additional reviewers, e.g., having specific expertise. Drawbacks of email pass-around are:
i) the author can become overwhelmed by the email thread and easily get lost in the
emails, ii) the project manager might not be certain which, and/or if, the code changes
are being reviewed, and iii) the author might have problems in finding the correct files
to be reviewed within the email thread (SVOBODA, 2014; WANG et al., 2015). Hence, due
to such scalability difficulties in mailing lists (WANG et al., 2015), the code review process
evolved and the community has started using other approaches such as bug tracking sys-
tems and specific code review tools to review code changes (RIGBY; BIRD, 2013; WANG et

al., 2015; RIGBY et al., 2015).

2.2.2 Over-the-Shoulder

Similar to Fagan’s inspections and, as opposed email pass-around, the over-the-shoulder
code review approach assumes that the reviewer and the author are physically present in
the same space at the same time. However, as opposed to Fagan’s inspections, the only
predefined roles are author and reviewer. When the author finishes working alone, they
merely need to find a qualified colleague to review the code. The author can then explain
the rationale behind their decisions. The code review can be performed at the author’s or
reviewer’s workstation. The main advantage of this approach is the fast feedback cycle,
due to face-to-face communication between the author and the reviewer (WIEGERS, 2002;
SVOBODA, 2014). Its mains disadvantages are the need to be in the same place, and the
extra effort required to keep the code review documentation up-to-date (WIEGERS, 2002;
SVOBODA, 2014).

2.2.3 Pair Programming

Extreme Programming (XP)2 introduced pair programming as an agile software de-
velopment practice whereby two developers work on the same workstation together. As
such, each developer can verify each other’s work. The roles in pair programming are: the
driver (responsible for implementing the code change), and the navigator (responsible for
reviewing the code from the driver) (RIGBY, 2011). The developers can also change roles.
As is the case with over-the-shoulder, in pair programming the developer and the reviewer
are required to be in the same place. In contrast to the over-the-shoulder approach, the
implementation phase and the review phase are merged. During pair programming, the
code change is written and reviewed at the same time by both developers, while during
over-the-shoulder, only the author implements the change, and the reviewer can see the
code as a whole. This approach is particularly useful for experienced developers to men-
tor less experienced colleagues, and also for knowledge sharing (RIGBY, 2011; SVOBODA,
2014). The main drawback is the time consumed by two developers working on the same
2 www.extremeprogramming.org
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code change, and only the parts highlighted by the author are reviewed (RIGBY, 2011;
SVOBODA, 2014). There is also a further generalisation of pair programming called mob
programming (BUCHAN; PEARL, 2018; WILSON, 2015). In this approach, the whole team
works on the same code change at the same time, space, and computer.

2.2.4 Tool-Assisted

The tool-assisted approach makes use of distributed code review tools. As detailed below,
features of code review tools have been designed to address the shortcomings of the earlier
code review approaches. This makes the tool-assisted approach the simplest, most efficient,
and currently the most popular code review approach (SVOBODA, 2014; COHEN; TELEKI;

BROWN, 2006).

• Automated File Gathering. This feature addresses the drawback of the email
pass-around approach by including all the correct files to be reviewed in the same
place, i.e., in the version control system (VCS).

• Combined Display - Differences, Comments, Defects. This feature addresses
all the above-mentioned approaches. The most time-consuming tasks during code
reviews are: i) finding the differences in the source code, ii) associating the comments
with a particular file or line number, and iii) understanding them. Hence, code review
tools show the difference between the files, i.e., before and after the change, in a way
the code review comments can be threaded (these are called general comments)
and they can also be linked to specific parts of the source code (these are called
inline comments). Thus, the developers do not need to spend time trying to
cross-reference comments, defects, and source code.

• Automated Metrics Collection. This feature also addresses the problem of all
other approaches: to produce accurate metrics so project managers can understand
and measure the review process. It is probably certain that no developer likes to have
a stopwatch and line-counting tools while code reviewing. Consequently, the code
review tool can collect all code review metrics without bothering the developers.

• Review Enforcement. This feature addresses the drawback of almost all previous
approaches: the manager not knowing whether the reviewer has already reviewed
the code change. Code review tools can enforce this workflow.

• Clients and Integrations. This feature addresses a drawback of all other ap-
proaches: the possibility for the developer to use different ways of reviewing. Code
review tools can support reviews by command-line tools, integrations with Inte-
grated Development Environments (IDE), and version control GUI clients. By pro-
viding all these kinds of support, they can satisfy the different needs of different
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developers. Furthermore, the tools can integrate with continuous integration sys-
tems which can build and run tests automatically.

• Asynchronously and non-locally. This feature addresses the drawback of over-
the-shoulder and pair programming as it does not require the developers to be in
the same place. Furthermore, the communication between the author and reviewers
is through asynchronous messages.

• Automatically reviewers’ selection. This feature addresses the problem of find-
ing the best developer to review the code change. Code review tools can indicate
the appropriate reviewer based on the expertise with the modified component.

Figure 2 is an example of the tool-assisted approach. The code review tool is respon-
sible for keeping all the information together (the source code, the commit message, the
code review comments, etc.). Code review tools can also notify both authors and reviewers
when there is a new event in the code review, e.g., when the author submits a new code
change or when there is a new message.

There are several software-based code review tools nowadays, some of them are browser-
based, e.g., Gerrit Code Review3, Crucible4, and Differential5, and some of
them integrate within standard IDE, e.g., Gerrit and Review Board6 can be inte-
grated with Eclipse7 and NetBeans8, respectively. These tools can also be integrated
with VCS (TICHY, 1985), e.g., Gerrit can be integrated with Git9 and Crucible can
integrate with, among others, Mercurial10 and Subversion11.

Due to the boosting of the code review tools, the OSS projects, and companies using
them (RIGBY et al., 2012; BACCHELLI; BIRD, 2013; RIGBY; BIRD, 2013; BOSU et al., 2017),
we focus our study on the tool-assisted code review approach.

2.3 MODERN CODE REVIEW

Code review has been the focus of a plethora of studies (COHEN; TELEKI; BROWN, 2006;
BAVOTA; RUSSO, 2015; BACCHELLI; BIRD, 2013; TAO et al., 2012; KONONENKO et al., 2015;
HENTSCHEL; HÄHNLE; BUBEL, 2016; MUKADAM; BIRD; RIGBY, 2013; HAMASAKI et al.,
2013; THONGTANUNAM et al., 2014; YANG et al., 2016; WESEL et al., 2017). In this section,
we discuss general work related to code reviews. The following Chapters 3, 4, and 5 provide
a related work discussion specific to each chapter.
3 www.gerritcodereview.com
4 www.atlassian.com/software/crucible
5 www.phacility.com/phabricator/differential
6 www.reviewboard.org
7 www.eclipse.org
8 https://netbeans.org
9 https://git-scm.com
10 www.mercurial-scm.org
11 https://subversion.apache.org
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Figure 3 – A real-world study comparing the cost of development with and without code
review (COHEN; TELEKI; BROWN, 2006).

Code review is a well-known practice for improving software quality. Finding and
fixing bugs during code reviews before they go on production can save time and money. A
real-world case study showed that the use of code review could have saved more than U$
200.000,00 in a project (COHEN; TELEKI; BROWN, 2006). Figure 3 shows a real-world study
on the difference between development with and without code review. We can observe
the amount that would have been saved from the costs of fixing bugs on production.
Furthermore, a code review would have found 162 additional bugs.

Bacchelli and Bird (BACCHELLI; BIRD, 2013) introduce the term modern code review
which is supported by tools, is informal, and which happens frequently. They explore the
motivations, challenges, and outcomes of code reviews by observing, interviewing, and
surveying software developers. Their study shows that finding defects is not the only ben-
efit of code reviews, knowledge transfer and team awareness are also advantages coming
from reviews. They also show that the main challenge of code review is understanding
the code change and its context.

Tao et al. (TAO; HAN; KIM, 2014) analyse the reasons why code changes are rejected
at Eclipse and Mozilla. They manually analyse a total of 300 rejected code changes,
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conduct survey of developers, and perform a literature survey. As a result, they derive
a comprehensive list of code change rejection reasons and also present guidelines for
developers writing acceptable code changes. The list contains 30 reasons which are divided
into five main categories: problematic implementation or solution, difficult to read or
maintain, deviating from the project focus or scope, affecting the development schedule,
and lack of communication or trust.

Rigby et al. (RIGBY et al., 2015) study several systems using a mixed-method approach
to understand the code review process. They also examine the reasons why pull requests
on GitHub are rejected and discover that there is no one clear outstanding reason for
rejecting code changes in code reviews. The main reason for rejecting (18% of the pull
requests) is superseded, i.e., when another pull request has already solved the problem
with a better implementation. The second most common reason, and still only 13% of
pull requests, is due to technical issues.

Bavota and Russo (BAVOTA; RUSSO, 2015) investigate how code reviews influence the
chance of inducing bug fixes, and the quality measured by code coupling, complexity, and
readability of the code changes. They show that commits not reviewed are twice as likely
to introduce defects than reviewed commits. Furthermore, the reviewed code changes have
a substantially higher readability as compared to unreviewed code changes.

Kononenko et al. (KONONENKO et al., 2015) investigate the quality of code reviews
in an OSS project by exploring the factors that might affect the reviews. They use the
SZZ algorithm to find code changes that introduce defects and then relate them to the
code review information. They show that 54% of the code changes that went through
the review process introduced defects into the system. Furthermore, personal metrics
(reviewer experience and workload) and participation metrics (number of reviewers) are
associated with the quality of the code review process. Another interesting result is that
the technical properties of the code change (the size, number of files changed, etc.) have
a significant impact on the chance of inducing defects in the system.

Barnett et al. (BARNETT et al., 2015) introduce a static analysis tool for decomposing
code changes to facilitate code reviews at Microsoft. The rationale for their technique
is that the composite code change can be partitioned using def-use (the definition of any
entity and its uses are related) and use-use (the uses of the same entity are related) rela-
tionships. As such, the set of diff files that are syntactically and semantically related can
be grouped together. It is important to mention that their def-use and use-use relation-
ships did not present any false positives. After the tool evaluation, they received positive
feedback from developers and most of them consider the idea helpful for reviewing the
code changes.

There are also several studies providing datasets of code reviews. Each one of them
has a different characteristic. Mukadam et al. (MUKADAM; BIRD; RIGBY, 2013) provide a
dataset of Android containing information about code changes, reviewers, review dura-
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tion, and what kinds of discussions and feedback developers usually give in code reviews.
This dataset does not provide the inline comments. Hamasaki et al. (HAMASAKI et al.,
2013) provide dataset from four OSS projects, including Android. The dataset contains
information related to the code review, code change, and reviewers. They do not include
general and inline comments. Instead, they show only the number of each type of com-
ment. They also provided extraction tools, so the community can access and use them to
mine other datasets.

Thongtanunam et al. (THONGTANUNAM et al., 2014) also provide a code review dataset
Android and additionally, a web visualisation tool for analysing it. The tool presents
the code review information from three perspectives: i) the review perspective presents
the number of code reviews, reviewers, code changes, general comments, and modified
files on a weekly basis; ii) the process perspective shows the number of activities (number
of code reviews created, number of code changes submitted, number of reviews merged
and abandoned, etc.) performed on a daily basis; and iii) the human perspective presents
the activities of each developer. It also does not provide the inline comments from the
reviews.

Yang et al. (YANG et al., 2016) present a data set from five OSS projects, including
Android. They present the dataset from three different perspectives: i) the people-related
perspective shows personal information about reviewers; ii) the process-related perspective
shows data about the review, such as review status, approval and period; and iii) the
product-related perspective shows information related to the code change itself.

To the best of our knowledge, there is no data set related to confusion in code reviews.
Furthermore, no other study provided inline comments in their data sets. Our study
provides three different data sets of code reviews, described in the following chapters.

2.4 CONFUSION, UNCERTAINTY, AND LACK OF KNOWLEDGE

There are several studies which tried to model the affective disequilibrium related to
confusion, uncertainty, and lack of knowledge, specially from the Psychology field. In this
section, we discuss the most relevant studies on those topics.

Merriam-Webster dictionary12 provides the following definitions of the word confu-
sion:

“a situation in which people are uncertain about what to do or are unable to
understand something clearly”

“the feeling that you have when you do not understand what is happening, what
is expected, etc.”

12 www.merriam-webster.com/dictionary/confusion
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Figure 4 – The taxonomy of unknowns (SMITHSON, 1989).

Smithson (SMITHSON, 1989) defined the taxonomy of unknowns, which is presented in
Figure 4. We will discuss only the most relevant topics from the taxonomy for this thesis.
Smithson uses ignorance as a starting point. Next, he distinguishes passive (error) and
active (irrelevance) ignorance. From his definition, confusion, which is a type of distortion,
means a wrongful substitution, i.e., a mistake of one thing for another. As for uncertainty,
it is referred to partial information, i.e., when knowledge is incomplete to a certain degree.

Armour (ARMOUR, 2000) suggested categorising ignorance into layers based on what
we know and what we do not know. He defined the Five Orders of Ignorance:

• 0th Order Ignorance - Lack of Ignorance: when we know something, i.e., it is
knowledge;

• 1st Order Ignorance - Lack of Knowledge: when we do not know something,
but we can easily identify that fact;

• 2nd Order Ignorance - Lack of Awareness: when we do not know that we do
not know something, i.e., when we are unaware of that fact;

• 3rd Order Ignorance - Lack of Process: when we do not know a suitably
efficient way to find out we do not know that we do not know something;

• 4th Order Ignorance - Meta Ignorance: when we do not know about the Five
Orders of Ignorance.

D’Mello and Graesser (D’MELLO; GRAESSER, 2014) focused on confusion and how it
impacts learning and problem solving. They consider confusion to be an affective state
rather than an emotion. According to D’Mello and Graesser, confusion happens when
an individual detects new or discrepant information, e.g., there is a conflict with prior



32

knowledge. Thus, confusion happens when such new or discrepant information triggers
an impasse on the individual, which blocks the goal and results in the person being
uncertain about how to proceed next. After confusion is present, the person must deal
with problem solving activities to be able to successfully restore equilibrium. To solve
confusion, an individual needs to “stop, think, effortfully deliberate, problem solve, and
revise their existing mental models” (D’MELLO; GRAESSER, 2014). In contrast, if confusion
is not resolved, it can spawn negative affective states in the individual, such as frustration
and anger.

Jordan et al. (JORDAN et al., 2012) investigated the frequency of uncertainty expressions
in discussions of students using a computer-mediated environment. They created their own
definition of uncertainty and provided a coding scheme to describe and model it. Despite
acknowledging that defining uncertainty was not simple, their definition is:

“situations when individuals have a sense of wondering, doubt, or unease about
how the future will unfold, what the present means, or how to interpret the
past.”

The uncertainty coding scheme defined by Jordan et al. (JORDAN et al., 2012) is pre-
sented in Figure 5. Uncertainty is divided into four main groups: i) indirect expression
of uncertainty, ii) request for a solution, iii) direct expression of uncertainty, and iv) dis-
cussing uncertainty. The first group contains three categories of uncertainty: expressions
related to the degree of truth (hedges), expressions related to the likelihood of occurrence
of an event (probables), and expressions related to hypothetical scenarios (hypotheticals).
The second group contains one category with direct and indirect questions. The third
group contains two categories, one related to direct expression of uncertainty in the first
person (I statements), and another related to paralinguistic indicators (nonverbals). The
last group contains one category (meta) with expressions related to uncertainty in the
past, or from another person.

We believe all the aforementioned definitions about confusion, uncertainty, and lack of
knowledge are somehow connected. Lack of knowledge and confusion, which can also en-
compass doubt and uncertainty, are strictly linked (e.g., confusion could be determined as
lack of knowledge) and are both actionable (D’MELLO; GRAESSER, 2014). In the following
Chapter 3, we provide our own definition of confusion based on this literature.
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Figure 5 – The uncertainty coding scheme (JORDAN et al., 2012).
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3 CONFUSION DETECTION

In this chapter, we present our first study aiming to solve the problems of the lack of
knowledge about confusion in code reviews and the lack of tools for confusion identification.
This study was conducted in two steps. Firstly, we performed a preliminary analysis of
the feasibility of the identification of confusion in code reviews. Taking as a starting point
the positive results of the preliminary study, we conducted a more comprehensive study
on this topic. Hence, this chapter presents our confusion definition, the confusion coding
scheme we built, and the automated approach we developed for detecting confusion in
developers’ comments in code reviews.

In Section 3.1, we discuss the overview of these studies. Next, we present our definition
of confusion, and the confusion coding scheme in Section 3.2. The annotation process for
building the gold standard sets is described in Section 3.3. The preliminary study is
presented in Section 3.4 and the more comprehensive study in Section 3.5. Section 3.6
lists the threats to validity we identified of each study. Related work to both studies is
discussed in Section 3.7. Finally, we summarise our work in Section 3.8.

3.1 OVERVIEW

Several studies point out that one of the main challenges developers face during code re-
views is understanding the code change and its context (BACCHELLI; BIRD, 2013; COHEN;

TELEKI; BROWN, 2006; TAO et al., 2012; SUTHERLAND; VENOLIA, 2009; LATOZA; VENOLIA;

DELINE, 2006). We believe that confusion can negatively impact the process. Understand-
ing confusion faced by developers in code reviews and being able to automatically identify
it is an important step in improving the code review process. For example, the presence
of confusion in code reviews can make it take longer than it should (i.e., delay the review
process), decrease the quality of the review, increase the number of discussions, or even
cause the code change be blindly accepted.

In this scenario, code review tools should be able to check for confusion in developers’
comments and, when confusion is present, they should trigger specific actions, such as
providing documentation or requesting the intervention of the code change author. Addi-
tionally, a precise approach for identifying confusion in code reviews can help researchers
build a large-scale database of comments that can be employed to identify causes, sen-
timents, and contexts associated with confusion. The topic of confusion in code reviews
and how to identify it is still unexplored. To the best of our knowledge, this is the first
study aiming to: i) understand confusion in code reviews, and ii) provide an automatic
approach for confusion detection.

Our preliminary study takes the first step towards confusion detection. We used
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396 general and 396 inline comments labelled as exhibiting and not exhibiting confu-
sion to train and test several classifiers. We observed that confusion can be reasonably
well-identified by humans. The agreement, measured with Fleiss’ kappa (FLEISS, 1971),
achieved a moderate value among the raters: 0.59 for the general comments, and 0.49 for
the inline ones. Subsequently, we built a series of classifiers for each kind of comment,
i.e., general and inline. The best precision for confusion identification reached 0.87 for
the general, and 0.61 for the inline comments. The highest values for recall reached 0.94
for the general, and 0.98 for the inline comments. Considering both precision and recall,
general comments presented 0.69 and 0.54, and the inline ones 0.43 and 0.58, respectively.

These results motivated us to further research about confusion identification and its
impact on the code review process. Hence, we decided to conduct a more in-depth study
about confusion detection by extending the preliminary one. The dataset used to train
the classifiers in the in-depth study contains three times more comments, both general
and inline. Furthermore, we have separate sets for training and testing, and we have
also evaluated the impact of data balancing on the training sets. Finally, as opposed to
our preliminary study, we considered two important techniques from machine learning:
feature selection and automated parameter tuning. The former is important because it
extracts only the most relevant features for the prediction model, and the latter, because
manual tuning, i.e., the act of choosing the best parameters for the classifier, is not
feasible (BERGSTRA; BENGIO, 2012).

3.2 CONFUSION DEFINITION AND CODING SCHEME

We use the studies discussed in Section 2.4 as inspiration to define confusion and to build
a confusion coding scheme. We define confusion broadly as a situation where a person is
uncertain about or unable to understand something.

To be able to model confusion, we use the uncertainty coding scheme proposed by
Jordan et al. (JORDAN et al., 2012). Even though their scheme is intended to model uncer-
tainty, we believe that their definition of uncertainty is broad enough to be similar to our
confusion definition. Our coding scheme contains the same seven categories of the scheme
by Jordan et al. (JORDAN et al., 2012). Each category contains keywords and expressions,
i.e., textual elements, related to expression of confusion:

• Hedges: expressions related to the degree of truth, e.g., “maybe”;

• Probables. expressions related to the likelihood of occurrence of an event, e.g.,
“likely”;

• Hypotheticals: expressions related to hypothetical scenarios, e.g., “what if”;

• Questions: expressions related to direct and yes/no questions, e.g., “why is this
here?”;
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• I Statements: direct expressions of confusion, e.g., “I’m not sure”;

• Nonverbals: expressions related to paralinguistic indicators, e.g., “hmm”;

• Meta: expressions related to confusion in the past or from another person, e.g., “I
didn’t understand”.

The coding scheme of Jordan et al. (JORDAN et al., 2012) has been designed for de-
scribing the occurrence of uncertainty expressions in discussions of graduate students
using a computer-mediated system, while we aim at identifying confusion in comments
of software developers using code review tools. Thus, we needed to extend the scheme
of Jordan et al. with expressions related to our definition of confusion. We found sev-
eral studies providing examples of uncertainty and confusion expressions (JORDAN et al.,
2012; HOLMES, 1982; JORDAN; JR., 2014; JORDAN et al., 2014; LAKOFF, 1975; VARTTALA,
2001). Hence, we extended our coding scheme with several expressions of confusion. For
instance, most of the hedges expressions are found in the article of Lakoff (LAKOFF, 1975).
Varttala (VARTTALA, 2001) provides a comprehensive list of probables and hypothetical
expressions. Holmes (HOLMES, 1982) shows some examples of probables. The studies of
Jordan et al. (JORDAN et al., 2012; JORDAN; JR., 2014; JORDAN et al., 2014) provide a few
examples of all categories.

However, even after adding all such expressions, the framework still missed expressions
of confusion such as “I’m not sure” and “I don’t understand”. Therefore, we included in our
confusion coding scheme some expressions of confusion based on common sense knowledge.
This process was performed by four researchers on online meetings, where they discussed
and agreed on confusion expressions. Furthermore, we augmented the list of expressions by
adding all verb tenses for each verb, e.g., “believe”, “believed”, and “believes”, and for the
adjectives and nouns, we added both the singular and plural forms, e.g., “assumption”,
and “assumptions”. The complete list of expressions of each category of our confusion
coding scheme is presented in the Appendix A, and publicy available online (EBERT,
2019).

3.3 GOLD STANDARDS FOR CONFUSION IN CODE REVIEWS

In this section, we explain the data collection process used to build the datasets of code
review comments, which were available for all studies in this thesis. These datasets were
used in this study to create the gold standards for confusion in code reviews; in the study
of Chapter 4 for the labelling of reasons for confusion, its impacts, and the strategies
developers adopt to deal with it; and in the study of Chapter 5 for the classification of
the communicative intentions of questions.

We selected Android as the case study subject. We decided to focus only in one
project and conduct an in-depth analysis on it, the analysis of other systems will be
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part of the future work. Besides being a large and well-known OSS project, it also has a
rigorous code review process and a large number of publicly available code reviews. We
consider Android as a “typical” or “paradigmatic” case (FLYVBJERG, 2007) of a large open
source project. Android uses Gerrit1 as its code review system. Developers submit their
changes into Gerrit and invite others to review the changes. The change is merged only
after having been verified and approved by a senior developer. The web interface provided
by Gerrit allows reviewers to create general comments on the code review page, and
inline comments in the source code file, referencing a word, a line or a group of lines.

We downloaded all code reviews from the Android project using Gerrit API until
November 25th, 2016, comprising a total of 140,006 code reviews, including 28,091 with
inline comments. The Gerrit API provides all information about the code reviews as
.json files. The information supplied by Gerrit includes, among others, the code review
ID, name and email address of the author and reviewers, the code review status, the
creation date, the number of insertions and deletions of the code change, the general and
inline comments, etc.

Our original dataset contains 899,105 general comments and 232,471 inline comments.
While analysing it, we identified several bots acting in the general comments, such as
Treehugger Robot, Deckard Autoverifier, and Android Merger. Thus, we
decided to exclude the 238,260 bot comments from our dataset, leaving 660,845 general
comments. There are no bot messages in the inline comments. These results are presented
in the first step of Figure 6.

In the second step, we used the confusion coding scheme to filter out comments that
do not contain expressions related to confusion. This way, we optimised our approach to
identify confusion in order to improve recall. To implement this step, we used Apache
Solr2 to tokenise the comments and to store all code review comments from our dataset.
We then ran queries on it for each feature of our scheme. As a result of this filtering
process, we kept 91,658 general and 116,292 inline comments, shown in the second step
of Figure 6.

We started the annotation process with a random sample of 25 general comments of
the hedges category for training purposes. The first author classified them as confusion
or no confusion, and then the other authors agreed on all labels of the sample. These
comments were used as a guideline for the rest of the annotation process.

During the implementation of our confusion coding scheme, we split the seven cate-
gories into three groups. The rationale behind this decision is simple: all the scheme cate-
gories, except for questions, were implemented similarly with regular expression matching.
Additionally, since hedges is the largest group, containing more than 97% of the gen-
eral and 87% of the inline comments, we decided to separate it from the other categories.
1 http://www.gerritcodereview.com
2 http://lucene.apache.org/solr
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Hence, the three groups we created are: hedges, questions, and other. The other group
comprises the rest of the categories of the scheme: probables, hypotheticals, I statements,
nonverbals, and meta. Figure 6 shows this arrangement in the second step.

The questions group was implemented differently because regular expression match-
ing alone would not be satisfactory. For example, just looking for question marks to
identify questions would return several erroneous cases, such as URLs and code snippets
identified as questions. Hence, we decided to adopt a more appropriate approach: we used
the StanfordNLP API (MANNING et al., 2014) to identify questions in developers’ com-
ments. Using this API we can identify the grammar structure of each sentence from the
code review comment and then check if it is an affirmative sentence or a question.

To achieve a confidence level of 95% and a confidence interval fewer than 5% (MET-

CALFE, 2001), we sampled 400 comments of each of the groups hedges, other, and
questions, for both general and inline comments, i.e., 2,400 comments overall. During
the annotation process, four raters having at least a master’s degree in Computer Science
manually and individually classified the comments as expressing confusion or no confu-
sion. As a guideline, the raters were instructed not to consider as confusion comments
that employ uncertainty in expressing politeness, e.g., “Could anyone submit this?” and
“Maybe add checker tests to make sure you cover the cases you intended?”. Indeed, the for-
mer is a polite request and the latter makes a polite suggestion. Additionally, they were
instructed to consider the comments where manifestations of confusion appear within
quoted text as no confusion, in order to avoid duplication. The quoted texts in Gerrit
are pieces of older comments to which the current comment makes a reply, and they start
with the character ‘>’. For instance, the comment presented below from Android3 is a
case of the feature from our scheme being found in the quoted text: this is an example of
no confusion comment.

> Good catch. Might make sense to enforce setting this variable for
> anything that builds a shared library.

and static libraries too :-)

To measure the agreement in the annotation process for general and inline comments,
we used Fleiss’ kappa (LANDIS; KOCH, 1977). The disagreement was resolved in two steps,
first we used majority vote. Then in cases where the number of raters favouring confusion
and no confusion were equal, the raters had an online meeting. There were some cases
where the agreement among the raters was not possible, i.e., eight comments from hedges,
five from other, and two from questions. Hence, we decided to discard such comments.
The results of the agreement and the annotated comments are presented in the second
step of Figure 6. At this stage, we had a dataset (comprising the three groups hedges,
3 https://android-review.googlesource.com/c/166000
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other, and questions) of 1,136 code reviews with 1,189 general and 1,190 inline comments
labelled as confusion and no confusion.

Since we started with a random sample of each group, our dataset still had code review
comments that had not yet been verified, i.e., there were 14,996 remaining unlabelled
general comments from the 1,136 code reviews. We did not analyse the remaining inline
comments from our dataset. This is our plan for future work. As another round of manual
annotation would be infeasible on this enormous amount of comments, we decided to use
a different approach, which led us to the third step (cf. Figure 6).

We consider a code review as presenting confusion if it contains at least one confusion
comment, either general or inline. Hence, in order to be able to determine whether code
reviews contain confusion, we needed to verify all the other comments from our dataset.
Since our dataset contains code reviews with (at least) one no confusion comment, we
could not argue about confusion on those code reviews before verifying their remaining
comments. This is the reason why we followed a different process to build another group
of code review comments using the remaining comments.

We started the third step by applying our confusion coding scheme to the set of 14,995
remaining comments to filter out those not containing indication of confusion, which re-
sulted in 3,018 comments. Once again we optimised the confusion detection for recall.
Next, we removed 396 comments whose features were within quoted text, avoiding rep-
etition. This still left us with 2,622 comments to be labelled: labelling 2,622 comments
manually is unfortunately not feasible due to time restrictions. At this stage of the pro-
cess of building our datasets, we had already completed the preliminary study, which is
discussed in Section 3.4. Hence, we decided to take advantage of the classifiers already
built by such study. We used the classifier trained over the groups hedges, other, and
questions of the general comments.

Instead of tuning the classifier with the best performance on the confusion class, we
decided to do the opposite. We used the classifier with the best precision on the no
confusion class to exclude as many as possible of the comments without confusion. Thus,
we would not need to manually analyse those comments classified as no confusion by
the classifier because it has a high precision. Hence, we could focus on the remaining
comments, i.e., classified as confusion by the classifier. The classifier used in this step was
the Multinomial Naive Bayes with precision of 0.94 and recall of 0.44 for no confusion
class. The results are presented in the third step of Figure 6, the classifier indicated 356
remaining comments as confusion, which were manually annotated by the four raters.
These labelled comments were integrated into our dataset of general comments.

Finally, we built two gold standard sets: one for general comments with 350 (23%)
confusion and 1,192 (77%) no confusion comments, and the other for inline comments
with 270 (23%) confusion and 920 (77%) no confusion comments. Both gold standard
sets are publicly available (EBERT, 2019).
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3.4 CONFUSION CLASSIFIER: A PRELIMINARY STUDY

In this section, we explain our preliminary study. It is our first step towards the identi-
fication of confusion in developers’ comments in code reviews. The main vehicle of this
study is an exploratory case study (RUNESON; HÖST, 2009) on confusion in code reviews.
We aim at understanding how developers express confusion during code reviews. As a
preliminary step towards building a classifier for confusion, we assess whether confusion
can be identified by humans. Hence, our research questions are:

• RQ1. Can human raters agree on the presence of confusion in code review com-
ments?

• RQ2. Can a tool perform similarly to humans when classifying confusion in code
review comments?

Since this is an initial study, we start considering only the hedges group of our dataset
to answer those RQs. This decision is based on the fact that hedges is the largest group.
The annotation process is described in the first and second steps of Figure 6 of Section 3.3.
The hedges dataset contains 396 general and 396 inline comments, as four general and
four inline comments have been discarded, this is the gold standard set for this study.

3.4.1 Methodology

Before training the classifiers, we first remove the line breaks and replace URLs, numbers,
commits’ ID and user names with meta tokens (e.g., @URL, USERNAME, COMMIT
and NUMBER). To identify the user names we leveraged the name list collection by
Vasilescu et al. (VASILESCU; CAPILUPPI; SEREBRENIK, 2014). We exploit machine learning
techniques using our gold standard for training and validation. We experiment with several
state-of-the-art classifiers using Weka (FRANK; HALL; WITTEN, 2016). To understand the
impact of the feature choice on the classifier performance, we run the classifiers over three
different models.

In the first model, i.e., the baseline, features are uni- and bi-grams extracted by the
unsupervised StringToWordVector filter from Weka, and selected based on the
Term Frequency Inverse Document Frequency (TF-IDF) (RAJARAMAN; ULLMAN, 2011).
The second model, baseline + 3, extends the baseline by including i) the modal verbs
count, ii) the count of the hedges from our confusion coding scheme, and iii) the pres-
ence of question marks. In this model, we do not distinguish between different hedges or
modal verbs. The last model, baseline + hedges, also adds to the baseline hedges from our
confusion coding scheme, but as opposed to baseline + 3, it considers different hedges as
different features.

To assess the performance of different classifiers, we compare them against the ZeroR
classifier, which always predicts the majority class, and Random Guessing. We run our
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experiments in a 10-fold cross-validation setting, using stratified sampling as implemented
by Weka. The same sets are used for training and testing, i.e., we do not split the gold
standard set into train and test sets in this study.

3.4.2 Results

The agreement between the four raters of the manual labelling of the group hedges,
measured with Fleiss’ kappa, is 0.59 for general and 0.49 for inline comments. Hence,
regarding our RQ1, we believe those results reveal that humans can, indeed, reasonably
identify confusion in code review comments (kappa between 0.41 and 0.60 is considered
to be moderate (LANDIS; KOCH, 1977)). After solving the disagreement, we observe that
confusion is expressed both in the general (18%) and in the inline (21%) comments, and
while there are slightly more confusion comments among the inline ones, the association
between the kind of comments and presence of confusion is not statistically significant
(𝑝 ≃ 0.33 for Fisher’s exact test.)

As for our RQ2, the classifiers’ results are shown in Table 1. The table shows the per-
formance of each classifier on each class: confusion comments and no confusion comments.
The results show that tools can perform better than humans in the task of identifying con-
fusion comments. The best precision on the confusion class is obtained by OneR for both
general and inline comments albeit with different feature settings: for general comments,
the best model is baseline + 3 (0.875), and for inline ones—baseline + hedges (0.615). For
recall, the best classifier is Multinomial Naive Bayes, for both general (0.944) and inline
comments (0.998). It achieves the same performance for all models, both for general and
inline comments. Regarding the balance between precision and recall, the best classifier
is JRip for general (0.609) and Logistic for inline comments (0.497). In both cases, the
model with best performance is baseline + 3.

3.4.3 Discussions

The interrater agreement suggests that identification of confusion can be reliably per-
formed by human raters. This confirms the reliability of our annotation schema and the
resulting golden sets. However, dealing with small, highly unbalanced dataset is something
undesirable when training a classifier in a supervised machine learning setting (HE; GAR-

CIA, 2009). Still, our preliminary results confirm that automatic detection of confusion in
both general and inline comments is feasible.

More specifically, we observe that the more advanced models baseline + 3 and baseline
+ hedges tend to outperform the baseline model, and none of the best classifiers reviewed
above makes use of the baseline model. This means that addition of more specific features
geared towards detection of confusion is indeed beneficial.

Highest recall is observed for both general and inline comments when using Multino-
mial Naive Bayes, regardless of the feature setting. This is consistent with previous evi-
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Classifier Class
General comments Inline comments

Baseline Baseline + 3 Baseline + H Baseline Baseline + 3 Baseline + H
P R F P R F P R F P R F P R F P R F

Naive Bayes C .39 .47 .43 .44 .50 .47 .40 .50 .44 .38 .53 .44 .39 .54 .45 .38 .54 .45
NC .87 .84 .85 .88 .86 .87 .88 .83 .85 .86 .76 .81 .86 .77 .81 .86 .76 .81

Multinomial C .20 .94 .34 .20 .94 .34 .21 .94 .34 .23 .98 .37 .23 .98 .37 .23 .98 .37
Naive Bayes NC .94 .20 .33 .94 .20 .33 .94 .21 .35 .97 .12 .22 .97 .12 .22 .97 .13 .23

Logistic C .34 .61 .44 .36 .63 .46 .35 .59 .44 .43 .56 .48 .43 .58 .49 .43 .56 .48
NC .89 .74 .81 .90 .75 .82 .89 .75 .81 .87 .80 .83 .87 .79 .83 .87 .80 .83

Simple C .47 .12 .19 .68 .23 .35 .50 .12 .20 .45 .17 .25 .50 .10 .17 .51 .20 .29
Logistic NC .83 .96 .89 .85 .97 .90 .83 .97 .89 .81 .94 .87 .80 .97 .87 .81 .94 .87

SMO C .41 .09 .15 .50 .13 .21 .38 .09 .15 .51 .20 .29 .52 .22 .31 .50 .20 .28
NC .82 .96 .89 .83 .96 .89 .82 .96 .89 .81 .94 .87 .81 .94 .87 .81 .94 .87

IBk C .30 .09 .14 .26 .09 .14 .29 .13 .18 .33 .01 .02 .25 .01 .02 .10 .01 .02
NC .82 .95 .88 .82 .94 .87 .82 .92 .87 .78 .99 .87 .78 .99 .87 .78 .97 .86

KStar C .18 1 .30 .18 1 .30 .18 1 .30 .21 1 .35 .21 1 .35 .21 1 .35
NC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JRip C .56 .12 .20 .69 .54 .60 .64 .12 .20 .57 .14 .22 .43 .15 .22 .60 .16 .26
NC .83 .97 .90 .90 .94 .92 .83 .98 .90 .80 .97 .88 .80 .94 .87 .81 .97 .88

OneR C .57 .05 .10 .87 .19 .31 .57 .05 .10 .23 .98 .37 .46 .07 .12 .61 .09 .16
NC .82 .99 .90 .84 .99 .91 .82 .99 .90 .97 .12 .22 .79 .97 .87 .80 .98 .88

J48 C .36 .16 .22 .59 .34 .43 .31 .16 .21 .30 .11 .17 .42 .25 .31 .31 .13 .18
NC .83 .93 .88 .86 .94 .90 .83 .92 .87 .79 .92 .85 .81 .91 .86 .79 .92 .85

Random C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Forest NC .81 .99 .89 .81 .99 .89 .81 .99 .89 .78 1 .88 .78 1 .88 .78 1 .88

REPTree C .36 .05 .09 .63 .48 .55 .38 .06 .11 .42 .16 .23 .50 .21 .30 .39 .15 .22
NC .82 .97 .89 .89 .93 .91 .82 .97 .89 .80 .93 .86 .81 .94 .87 .80 .93 .86

Random C .18 .50 .26 .18 .50 .26 .18 .50 .26 .21 .50 .29 .21 .50 .29 .21 .50 .29
Guessing NC .81 .50 .62 .81 .50 .62 .81 .50 .62 .77 .50 .61 .78 .50 .61 .78 .50 .61
ZeroR C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(Majority) NC .81 1 .90 .81 1 .90 .81 1 .90 .78 1 .88 .78 1 .88 .78 1 .88

Table 1 – Classifiers’ results: C—confusion class, NC—no confusion class; P–precision,
R—recall, F—the F-measure, H—hedges.

dence in literature showing how Multinomial Naive Bayes outperforms other approaches
when dealing with a small, unbalanced training set with few positive examples (FORMAN;

COHEN, 2004), as in our case.
While differences between general and inline comments affect the precision and recall

figures, the same classifiers seem to perform best. This is, however, not the case for the
F-measure. Overall, reasonably high precision and recall have been obtained, enabling
future statistical studies of causes and effects of confusion in code reviews.

The best precision for the general comments is higher than the one for the inline com-
ments, suggesting that identification of confusion in inline comments might be a more
challenging task. This observation concurs with the previous observation that identifica-
tion of confusion in inline comments turned out to be more difficult to the human raters
as well. Alternatively, one might need different predictors, e.g., the context of the code
change, to detect confusion in inline comments. However, OneR produces a simplistic
model, a set of rules operating on a single predictor, which may be poorly generalizable
on new unseen data.

These results motived us to continue studying confusion detection and to work on a
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more in-depth study, described in the next Section 3.5.

3.4.4 Implications

As direct implications, the identification of confusion comments presented by our classifiers
can enable statistical studies of causes and effects of confusion in code reviews. Moreover,
researchers now have evidence that inline comments are prevalent and relevant for future
code review studies: the number of confusion comments is similar for general and inline
comments. Previous work analysing code review comments has focused predominantly
on general comments (AHMED et al., 2017; MUNAIAH et al., 2017; PANGSAKULYANONT et

al., 2014; MUKADAM; BIRD; RIGBY, 2013; HAMASAKI et al., 2013; THONGTANUNAM et al.,
2014; YANG et al., 2016).

Furthermore, tool builders can benefit from our classifiers by expanding code review
tools so as to be able to support confusion faced by developers and expressed by hedges
expressions in the code review comments. Researchers can use our classifiers to study
confusion expressed by hedges expressions in other systems, and hence, propose solutions
to overcome the problems that confusion in code reviews bring forth, e.g., by including
more context information in the code reviews.

3.5 CONFUSION CLASSIFIER: A COMPREHENSIVE STUDY

In this section, we present the extension of our preliminary study. The goal of our pre-
liminary study was to assess whether confusion could be manually and automatically
identified in code reviews. Since the results provided positive evidence, we decided to
conduct an in-depth analysis on confusion identification.

In this study, we consider the final gold standard set of the annotation process de-
scribed in Figure 6 of Section 3.3 to build the classification models. The gold standard
set contains 1,542 general comments, 350 labelled as confusion and 1,192 as no confusion,
and 1,190 inline comments, 270 labelled as confusion and 920 as no confusion.

3.5.1 Methodology

The methodology used in this study to build our classification models is presented in
Figure 7. Each step will be described in the following sections.

3.5.1.1 Pre-Process

Firstly, we pre-processed the comments in the dataset so as to make them more amenable
to analyses (pre-process step). The pre-processing is performed by a Java script that we
wrote. Several removal and replacements with meta-tokens (CALEFATO et al., 2018) were
performed:
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Figure 7 – Comprehensive study methodology.

1. Replacement of source code snippets, log, and stack trace messages by @CODE and
@STACKTRACE meta-tokens. This step was done manually;

2. Removal of quoted texts. Quotes from other comments are discarded to avoid du-
plication;

3. Removal of line breaks;

4. Removal of corrupted characters;

5. Removal of XML meta-tokens;

6. Replacement of the Gerrit “Patch Set” pattern by @PATCHSET. Gerrit auto-
matically adds the expression “Pact Set” in the general comments;

7. Replacement of URLs by the @URL meta-token;

8. Replacement of user names by the @USERNAME meta-token. We used the dataset
provided by (VASILESCU; CAPILUPPI; SEREBRENIK, 2014) to identify user names;

9. Replacement of commits IDs by the COMMIT meta-token;

10. Replacement of numbers by the NUMBER meta-token;

11. Expansion of the contractions, e.g., “I’ll” is expanded into “I will”;

12. Escaping of single and double quotes. It was necessary in order to create the input
file to Weka;

13. Removal of special chars, such as =, -, &, #, *, $, +, [, and ];
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14. Handling of the negation: we appended the “_NEG” suffix to every word appear-
ing between a negation word and a clause-level punctuation mark (PANG; LEE;

VAITHYANATHAN, 2002; DAS; CHEN, 2001);

15. Removal of the stop words (e.g., “and”, “or”, “an”, and “one”). We used the Rain-
bow4 list of stop words;

The goal of expanding contractions is to have only one feature representing the same
expression, and in the end, improve the classifiers’ performance. For instance, “didn’t” and
“did not” are expressions with the same meaning, but the model would have considered
one feature for each expression. We found several tools online providing such functionality,
however, none of them was capable of handling more elaborate cases, such as the negative
questions. The concern with negative questions and contractions is the need to change the
position of the subject of the sentence. For example, the correct expansion of the question
“Didn’t you see the error?” is “Did you not see the error?”. We did not find any tool able to
handle such cases, mostly because it requires the construction of the syntactic structure
of the question. Hence, we decided to develop our own tool using the StanfordNLP
API. The replication package with the pre-processing steps, and the classification models
are publicy available (EBERT, 2019).

The reason for handling negation is that we believe that features of negative sentences
have a different effect in the classification (PANG; LEE; VAITHYANATHAN, 2002; DAS; CHEN,
2001). For instance, the features really and good from the examples “The code change
is really good.” and “The code change is not really_NEG good_NEG.” will not have
the same effect in the classification model, as the latter really and good have a negative
connotation.

3.5.1.2 Feature Extraction

In the second step, we applied feature extraction to our dataset. We consider keyword
based features in our study by counting n-grams appearing in the code review comment.
Each n-gram corresponds to a feature with the number of occurrences as its value in
our study. This is similar to traditional approaches used in text classification (JOACHIMS,
1998). We consider uni- and bi-grams. The StringToWordVector5 filter from Weka
was used to: i) extract the uni- and bi-grams, ii) apply stemming, and iii) employ the TF-
IDF (RAJARAMAN; ULLMAN, 2011) transformation.

All expressions of our confusion coding scheme, listed in Appendix A, are considered
features in our model. The categories of our scheme are also considered as individual
features, i.e., the sum of the occurrence of all expressions of each category.
4 <http://www.cs.cmu.edu/~mccallum/bow/rainbow>
5 http://weka.sourceforge.net/doc.dev/weka/filters/unsupervised/attribute/StringToWordVector.html

http://www.cs.cmu.edu/~mccallum/bow/rainbow
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Feature Description
Uni-grams Total occurrences of uni-grams.
Bi-grams Total occurrences of bi-grams.
Hedges Total occurrences of hedges.
Probables Total occurrences of probables.
Hypotheticals Total occurrences of hypotheticals.
Questions Total occurrences of questions.
I Statements Total occurrences of I Statements.
Nonverbals Total occurrences of nonverbals.
Meta Total occurrences of meta.
SBARQ Total occurrences of direct questions

introduced by a wh-word or a wh-phrase.
SQ Total occurrences of yes/no questions.
Questions The sum of SBARQ and SQ.
Question marks Total occurrences of question marks.

Table 2 – The list of features used in our models.

Additionally, we included four more features related to questions, in order to assess
their influence in confusion detection. The first one is the presence of the question mark.
The other are related to the kind of question. Since we were using the StanfordNLP
API (MANNING et al., 2014) to build the category questions of our scheme, we decided to
use it to identify and count the kind of question in the comments. The StanfordNLP
API can identify two types of questions:

• SBARQ: a direct question introduced by a wh-word or a wh-phrase, e.g., “what is
that?”;

• SQ: an inverted yes/no question, e.g., “is it correct?”.

Hence, we considered the total number of SBARQ, SQ, and their sum as features
related to questions. In the end, we explored 13 different kinds of features, which are
presented in Table 2. The feature questions represents the sum of the SBARQ and SQ.

3.5.1.3 Creation of Training and Testing Sets

Based on our gold standard sets, we created three models to be tested and evaluated in
the step stratified sampling split of Figure 7. The model GC contains general comments,
IC contains inline comments, and All contains the combination of both general and
inline comments. We split all models (GC, IC, and All) into training (70%) and testing
(30%) sets. We used Weka (FRANK; HALL; WITTEN, 2016) to split them using stratified
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sampling, i.e., keeping the proportion of the confusion and no confusion comments the
same in the training and the testing sets.

3.5.1.4 Resampling

A dataset is imbalanced when the classified categories are not approximately equally
represented. Oftentimes in real world datasets, this is the representation: the class of
interest, in our case confusion, represents only a small percentage (CHAWLA et al., 2002)
of all the cases. This is the case of our three models, the number of confusion comments is
smaller than the number of no confusion comments. The problem with imbalanced classes
within a dataset is degradation of the classifier’s performance: the result might be biased
towards the majority class, which means the misclassification of the minority class.

Hence, within each model, we experimented datasets with balanced classes in the
SMOTE step of Figure 7. The resampling was only applied in the training set of each
model (PARMANTO; MUNRO; DOYLE, 1996; ESTABROOKS; JO; JAPKOWICZ, 2004). We used
Synthetic Minority Oversampling TEchnique (SMOTE) (CHAWLA et al., 2002) to over-
sample the minority class, i.e., confusion. This is a technique for automatically creating
synthetic comments. The number of confusion comments from the IC and GC groups
was over-sampled with 250%, and the group All with 200%. We defined those percentages
aiming to reach a similar number of comments of each class. Figure 8 shows number of
confusion and no confusion comments from each dataset within each model. Each of the
three initial models GC, IC, and All derived one additional model with balanced classes.
Finally, we have a total of six models used for training:

• GC-I: model of general comments with imbalanced classes.

• GC-B: model of general comments with balanced classes.

• IC-I: model of inline comments with imbalanced classes.

• IC-B: model of inline comments with balanced classes.

• All-I: model with the combination of GC and IC with imbalanced classes.

• All-B: model with the combination of GC and IC with balanced classes.

3.5.1.5 Feature Selection

Feature selection (cf. Figure 7) is an important step for text classification in machine learn-
ing because it reduces the training time, simplifies the model for users, and increases the
generalisability of the model by reducing over-fitting (GUYON; ELISSEEFF, 2003; FORMAN,
2003). It is the process to automatically select a subset of the most relevant features to
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Figure 8 – The six models of our experiment.

predict the concern we are interested in, i.e., it identifies and removes as much irrelevant
and redundant features as possible.

Weka provides several techniques for feature selection. We followed the best rec-
ommendations (KAREGOWDA; M.A.JAYARAM; MANJUNATH, 2010; MENZIES, 2016) to use
wrapper-based methods (KOHAVI; JOHN, 1997). Wrapper methods treat feature selection
as a search problem by evaluating several models using procedures that add and/or re-
move predictors to find the optimal combination that maximizes the performance of the
model. The wrapper-based methods use search algorithms that consider the predictors as
inputs, and the performance of the model as the output to be optimised (KAREGOWDA;

M.A.JAYARAM; MANJUNATH, 2010). In general, these methods present a good perfor-
mance. However, they can be expensive in terms of computational complexity and time,
since each feature subset combination should be evaluated with the algorithm. We used
the WrapperSubsetEval6 method provided by Weka to run feature selection in all
our six models.
6 http://weka.sourceforge.net/doc.dev/weka/attributeSelection/WrapperSubsetEval.html
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3.5.1.6 Algorithm and Parameter Tuning

In machine learning, the algorithms have parameters which are learned by analysing the
data, and others which are not learned, i.e., they need to be supplied by the user. Param-
eter tuning is the process of finding the best parameters for the specific machine learning
algorithm. It is an important technique because it changes the heuristics on how the
algorithms learn, and subsequently, the performance of the algorithms. For instance, it
decides the criteria to split a node in a decision tree and the number of trees in a Ran-
dom Forest. Several studies on defect prediction show that performance degradation can
happen when a model is trained with suboptimal parameters because they are dependent
on the dataset used (HALL et al., 2012; JIANG; CUKIC; MENZIES, 2008; MENDE; KOSCHKE,
2009). Nonetheless, models built without parameter tuning may have statistically indis-
tinguishable performances (GHOTRA; MCINTOSH; HASSAN, 2015).

Hence, we used Auto-Weka (THORNTON et al., 2013) to perform automatic algo-
rithm and parameter tuning (cf. Figure 7) in our models to optimise their performance
when building prediction models. Auto-Weka executes algorithm selection and param-
eter optimisation over classification and regression algorithms on Weka. It performs a
statistically rigorous evaluation internally with 10-fold cross-validation, and provides the
best classifier with the best parameter configuration as result.

3.5.1.7 Evaluation Criteria

The evaluation of classifiers’ performance learned from imbalanced datasets should be
conducted using specific metrics to take into account the class distribution and to cor-
rectly assess the effectiveness of learning algorithms (CALEFATO; LANUBILE; NOVIELLI,
2018a). Traditional scalar metrics such as accuracy (the proportion of correctly classi-
fied instances), and error rate (the proportion of incorrectly classified instances) can-
not properly provide information about the performance of a classifier with imbalanced
classes (PROVOST; FAWCETT; KOHAVI, 1998; RINGROSE; HAND, 1997). Precision is also
sensitive with imbalanced datasets as it cannot identify how many positive examples are
incorrectly classified, i.e., the number of false negatives (HE; GARCIA, 2009). Moreover,
Menzies et al. (MENZIES; GREENWALD; FRANK, 2007; MENZIES et al., 2007) showed that
precision has instability problems, i.e., it can have large standard deviations when dealing
with skewed class distributions, which makes it hard to compare classifier performance.
Even though recall is not sensitive to imbalanced classes, any assessment based only on
it is inadequate because it does not provide any information about how many examples
are incorrectly classified as positives. The harmonic mean of precision and recall, i.e.,
F-measure, has been also shown to be problematic with imbalanced datasets (RAHMAN;

POSNETT; DEVANBU, 2012).
Differently from the scalar metrics, which impose a one-dimensional ordering, two-
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Figure 9 – The ROC plot for graphical assessment of performance.

dimensional plots conserve all the information related to the performance of a classifier,
and hence, support a visual analysis and comparison of the classification results (DRUM-

MOND; HOLTE, 2006). The Receiver Operating Characteristic (ROC) plot (PROVOST;

FAWCETT, 1997) is a two-dimensional graphic with the false positive rate as the x-axis,
and the true positive rate as the y-axis. ROC is not sensitive to class distribution because
it is only based upon true positive rate (i.e., true positive divided by the total positive in-
stances) and false positive rate (i.e., falso negative divided by the total negative instances),
which is a constant ratio for both balanced and imbalanced datasets. Thus, ROC plots
are appropriate for comparison of classifiers over imbalanced datasets (LESSMANN et al.,
2008). Figure 9 shows an example of a ROC plot. The ROC plot provides the visualisation
of the performance of the classifier as the trade-off between the accurate classification of
the positive instances and the misclassification of the negative instances. The diagonal
line connecting the points (0, 0) and (1, 1) represents the performance of a random clas-
sifier. Hence, the closer the curve is to the point (0, 1), i.e., the upper-left-hand corner,
the better the classifier performance is.

The scalar metric Area Under the ROC Curve (AUC) represents the ROC performance
of the a classifier. The larger the AUC value, the higher the classification potential of a
classifier. The AUC value ranges from 0 and 1. The ROC plot also shows the random
guessing as the diagonal line between the points (0, 0) and (1, 1), which has the AUC of
0.5. An AUC value of 0.5 means no discrimination of the classifier, i.e., it acts as a coin
flip. According to Hosmer and Lemeshow (HOSMER; LEMESHOW, 2000), the relevance of
the AUC value can be classified as follows:
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• 0.7 ≤ AUC < 0.8: means a considerable performance;

• 0.8 ≤ AUC < 0.9: means an excellent performance;

• AUC ≥ 0.9: means a outstanding performance.

Thus, we use the AUC as scalar metric to represent the ROC performance of con-
fusion prediction. The ROC plots are drawn to perform a graphical comparison of the
performance of the classifiers.

3.5.2 Results

The manual annotation of the groups other and questions resulted in agreement values
fewer than the group hedges (cf. Figure 6). We present again the results of the agreement,
measured with Fleiss’ kappa, among the four raters for all three groups in Table 3. From
all groups, hedges presented the best agreement (0.59 for general and 0.49 for inline
comments) and questions had the lowest rate (0.32 for the general and 0.41 for the inline
comments). The group questions of general comments is the only with a fair agreement
(between 0.21 and 0.40), while all the other groups present a moderate agreement (between
0.41 and 0.60) (LANDIS; KOCH, 1977).

hedges other questions
GC 0.59 0.48 0.32
IC 0.49 0.43 0.41

Table 3 – Fleiss’ kappa values of the manual annotation process.

The results of the feature selection of our models are presented in Tables 4, 5, and
6. The features of our confusion coding scheme are specified with the respective category
name in the tables. Furthermore, the features representing each category are specified
with the word category.

We can observe that features related to questions are good predictors of confusion,
being present in all models, e.g., question marks, SQARQ, SQ, and questions. The cat-
egories hedges, probables, and I statements are also relevant predictors of confusion. The
features from the nonverbals, hypotheticals, and meta categories were not selected as good
predictors of confusion in any of our models.

Table 7 presents the results of Auto-Weka: the best classifier and its performance
(the AUC value) on the training set of each model. Each model was trained and evaluated
with its respective classifier identified by Auto-Weka. All six of our trained models are
publicy available (EBERT, 2019). Table 7 also shows the performance of each classifier
on the test set, and their ROC plots are shown in Figure 10. To assess the performance
of our models, we compare them against the ZeroR classifier, which always predicts the
majority class. The performance of the ZeroR classifier is similar to random guessing: it is
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GC-Imbalanced GC-Balanced
seems (hedges) might (hedges)
question mark (category) pretty (hedges)
cl typically (hedges)
number @code I am not sure (I statements)

hedges (category)
nonverbals (category)
question marks (category)
@code
@stacktrace
@username
boot
build
end
find_neg
number number
number verifiednumber
review_neg
space
test_neg
verifiednumber

Table 4 – The list of features selected of the models GC-I and GC-B.

represented with the diagonal line between the points (0, 0) and (1, 1) in the ROC plot.
The best AUC values are highlighted in bold.

The best performances on the training set are achieved by the balanced models, with
IC-B presenting the highest AUC value of 0.957. The evaluation on the testing set showed
the best performance for the models related to inline comments IC-I and IC-B, with AUC
of 0.706 and 0.760, respectively. The imbalanced model related to general comments GC-I
performed worst both on training and testing sets, with AUC values of 0.597 and 0.599,
respectively.

Previous work has argued against the use of resampling in datasets (TURHAN, 2012;
LÓPEZ et al., 2013). Thus, we decided to experiment our imbalanced models with other
scenarios as a way to seek better performance. Despite the removal of stop words being
popular in machine learning, we followed previous research (SAIF et al., 2014; CALEFATO

et al., 2018) by trying our imbalanced models without removing those words. The results
are presented in Table 8 and the ROC plots in Figure 11. We can observe an improvement
of 25% on the model GC-I, and a degradation of 11% on the IC-I model. The model
All-I with stop words included showed a minor reduction of 1.4% in the performance.
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IC-Imbalanced IC-Balanced
really (hedges) rather (hedges)
about (hedges) about (hedges)
probably (probables) I am not sure (I statements)
questions (category) I do not understand (I statements)
SBARQ (category) probably (probables)
question mark (category) possible (probables)
@code_neg hedges (category)
case SBARQ (category)
check question mark (category)
commit @code
default_neg call

SQ (category)
time

Table 5 – The list of features selected of the models IC-I and IC-B.

All-Imbalanced All-Balanced
could (hedges) might (hedges)
may (hedges) seems (hedges)
about (hedges) seems like (hedges)
opinion (hedges) I am not sure (I statements)
would (hedges) I think (I statements)
I am not sure (I statements) I do not know (I statements)
I think (I statements) meta_weird
I do not know (I statements) hedges (category)
probables (category) SBARQ (category)
questions (category) @username
SQ (category) adding
android build_neg
worth_neg fine

format_neg
function
issue
understand_neg
wrong

Table 6 – The list of features selected of the models All-I and All-B.

3.5.2.1 Error Analysis

We decided to manually examine the comments misclassified by our models to get a
deeper understanding of the reason for the classification error. The goal of this analysis
was to identify the reasons why the classifiers produced a wrong prediction, and hence,
we aimed at improving our models based on these results. As an initial step, we veri-
fied the misclassification of the imbalanced models (GC-I, IC-I, and All-I). The error
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Classifier AUC (train set) AUC (test set)

Baseline ZeroR 0.500 0.500
GC-I J48 0.597 0.599
GC-B Vote 0.916 0.666
IC-I PART 0.733 0.706
IC-B RandomCommittee 0.957 0.760
All-I J48 0.691 0.676
All-B LWL 0.896 0.682

Table 7 – The results of the training and evaluation of the classifiers on each model.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

IC-B (AUC =  0.760)
IC-I (AUC =  0.706)
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Figure 10 – The ROC plots of the performance of the six models.

AUC (without stop words) AUC (with stop words) Improvement

GC-I 0.599 0.748 +25%
IC-I 0.706 0.626 -11%
All-I 0.676 0.666 -1.4%

Table 8 – The results of the improvement of the imbalanced models without the removal
of stop words.

analysis of the balanced models is left for future work. The total number of misclassified
comments by model is presented in Table 9. Next, we discuss notable error classes we
derived from a manual analysis of misclassified comments. The total number of misclassi-
fied comments was split among three researchers, who manually annotated the comments
with hypothesized causes of errors.

Questions not grammatically correct. The question posed by the developer does
not have the correct grammar structure of a question, and hence, the model cannot take
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Figure 11 – The ROC plots of the performance of imbalanced models with and without
removing stop words.

Misclassified
(% of the test set)

Test set size

GC-I 101 (22%) 462
GC-B 97 (20%) 462
IC-I 74 (20%) 357
IC-B 70 (20%) 357
All-I 161 (20%) 819
All-B 162 (20%) 819
Total 665 (20%) 3,276

Table 9 – Distribution of texts misclassified by our models.

the question into account for the classification. For example, “‘which’ what?” was not
identified as a question. We believe the reason is intrinsically related to the informality
used by developers when writing comments in code review tools (ZHOU; ZHANG, 2005).

Questions not detected by StanfordNLP API. A second problem related to ques-
tions is the StanfordNLP API not detecting them in the comment, e.g., “So you want
to capture *verbose* logging, but it has to be in a *user/release* build?” was not identified
as a question. Thus, such comment in our model was not indicated as containing ques-
tion, which in turn could have influenced the confusion classification. As future work, we
consider experimenting different Natural Language Processing (NLP) libraries (OMRAN;

TREUDE, 2017) in order to identify questions.
Communicative intention of questions. Another problem still related to questions

is their communicative intention, i.e., they have different meanings other than request for
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information, and consequently, they do not express confusion. For example, in the question
“How about keeping the comment ’once enqueued, the pending next is always non-null’?”,
the developer uses a question to make a kind suggestion. The use of politeness is also
another reason for misclassification of questions.

General errors. These are errors related to the pre-processing steps. Some comments
have an extremely short structure after all the pre-processing. For instance, the comment
“Patch Set 1: OK, but why?” was shortened into “PATCHSET NUMBER,?”. We believe
those cases provide too little context for the models to identify confusion. We also observed
some words, such as “we” and “can”, being considered as user names, and being replaced
with the meta-token @USERNAME. We think this can lead the models to misjudge
the comments as well. Another problem we identified is in our confusion coding scheme:
the expression not sure is not included, and it has been oftentimes present in confusion
comments misclassified by our models. This is a case we should have handled in the pre-
preprocessing steps, as the expression unsure is in our scheme, and both have the same
meaning.

3.5.3 Discussions

The main contributions of this study are the confusion coding scheme and the automatic
approach for confusion identification implemented by our models. All our six models out-
performed the baseline, with the models related to inline comments having a considerable
performance (HOSMER; LEMESHOW, 2000): the balanced model IC-B had the AUC of
0.760, and the imbalanced model IC-I, 0.706. The model of the general comments pre-
sented the worst performance from our models when the stop words are excluded, however,
when we experimented without removing them, the imbalanced model GC-I improved to
a considerable performance of 0.748. These results differ from the ones provided by our
preliminary study, where the model of the general comments performed better than the
inline comments.

Despite of the approach to balance datasets being very popular, it has also some draw-
backs (NOVIELLI; GIRARDI; LANUBILE, 2018). For example, it can change the underlying
statistical problem (TURHAN, 2012) and it might also not bring classification-performance
gain (LÓPEZ et al., 2013). In particular, Turhan (TURHAN, 2012) advocates against resam-
pling because it optimises the training but alters the actual statistical problem. We believe
this is the reason of the drop in the performance we observed on balanced models. As
an initial analysis, we also reported the results of the imbalanced models without the
removal of the stop words. It showed an improvement of 25% for the general model, but a
degradation of 11% for the inline model. The model with the combination of general and
inline comments showed a minor degradation of 1.4% in the performance.

The importance of questions for confusion identification is expressed by the fact that
all of our models consider the features related to questions (i.e., questions, SBARQ, SQ,
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or question marks) as the selected features. However, the group questions presented the
lowest agreement between the four raters during the manual annotation. Additionally, the
error analysis of the misclassified comments showed that there are several cases where the
misclassification is related to questions, i.e., several no confusion comments containing
questions are incorrectly classified as confusion. Thus, we believe those are important
factors that might negatively influence the performance of our classification models.

3.5.4 Implications

As direct implications of this in-depth study, the presented models enable statistical stud-
ies of causes and effects of confusion in code reviews. Moreover, now there is more evidence
that inline comments are prevalent and relevant for future code review studies. Future
research should consider including inline comments in their code review studies.

We believe that tool builders can benefit by expanding code review tools in order
to automatically detect and support confusion. Bots that can identify confusion in devel-
opers’ comments could be integrated into code review tools to provide support for those
developers. We envision code review tools able to, for example, provide the documentation
of the source for the reviewers when the bot identifies confusion on reviewers’ comment,
or provide the code context for the reviewers when confusion is due to other parts of code
not in the diff file.

Furthermore, researchers can use our replication package to check for confusion in
other software systems. It can enable future research on the understanding and comparison
of how confusion is expressed among different systems. They can also use our approach as
a basis to identify confusion in a number of different contexts, with different implications,
e.g., bug reports and the associated discussions (commit messages, email discussions, and
design and requirements documentation).

3.6 THREATS TO VALIDITY

In this section, we discuss the threats related to the preliminary and comprehensive studies
following the guidelines of Runeson et al. (RUNESON et al., 2012). We identify threats to
construct, internal, and external validity:

Construct validity. Threats to construct validity are related to how properly a mea-
surement reflects the concept being studied. Identifying confusion is not an easy task,
and it has been operationalized using keywords and expressions from a confusion cod-
ing scheme. We built our confusion code scheme base on an existing scheme for uncer-
tainty (JORDAN et al., 2012). Additionally, we considered several features from different
sources (JORDAN et al., 2012; HOLMES, 1982; JORDAN; JR., 2014; JORDAN et al., 2014;
LAKOFF, 1975; VARTTALA, 2001).
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Internal validity. Threats to internal validity pertain to inferring conclusions from
our study. None of the raters has been involved in Android development, so they might
have misinterpreted certain comments as confusion or no confusion. However, all raters
are computer scientists and two of the four have a substantial experience with labeling
textual information. Furthermore, all disagreements were solved with a majority vote and
online meeting with all raters when required.

External validity. Threats to external validity are related to the generalizability of
the study results. Our study targeted only Android. This means that other projects
might have different results. Replications are needed with larger datasets, using machine
learning techniques specifically designed to deal with skewness in class distribution, to
further assess the generality of our models. Furthermore, in our preliminary study we did
not apply resampling on the training to counteract majority class bias that inherently
affects our data. Learning from imbalanced data poses new emerging challenges that need
to be addressed to build robust models of knowledge from raw data (HE; GARCIA, 2009).
However, this threat was addressed in our comprehensive study with the application of
oversampling (CHAWLA et al., 2002) of the minority class, i.e., confusion.

3.7 RELATED WORK

Although automatic confusion identification has been advocated by several studies (YANG

et al., 2015; JEAN et al., 2016), to the best of our knowledge no other study focused on the
context of code reviews.

D’Mello et al. (D’MELLO et al., 2008) used an intelligent tutoring system able to help
students learning by holding a conversation in natural language to explore detection of the
learner’s affect state. Their results showed that dialogue features could significantly predict
the affective states of boredom, confusion, flow, and frustration. The experiments they
conducted showed that standard classifiers were moderately successful in discriminating
the affective states.

Baker et al. (BAKER et al., 2012) presented models able to automatically identify af-
fect from students using a widely used learning application. They used the log files to
detect students facing concentration, confusion, frustration, and boredom. Their models
presented a better performance than a random classifier on identifying students’ affective
states.

Yang et al. (YANG et al., 2015) used textual content of comments from forums of massive
open online courses and its clickstream data to automatically identify posts that express
confusion. Their model to identify confusion comprises questions, users’ click patterns,
and users’ linguistic features based on LIWC7 words. They tried to identify the reasons
why users are confused by looking at the recent click behavior. They found that the more
7 https://liwc.wpengine.com
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confusion students express or are exposed to, the lower the probability of their retention
in the course. However, as their model is not publicly available we could not compare it
to ours.

Another model to automatically detect expressions of uncertainty is presented by
Jean et al. (JEAN et al., 2016). Their model uses multiple lexical and syntactic features
to determine sentences through vector-based representations. However, their definition
of confusion is quite different from ours. For instance, sentences such as “Could anyone
submit this?” and “I rebased could you review again please.” are examples of comments
that the authors considered as exhibiting confusion. In our model, they are examples of no
confusion comments. We could test their model in our dataset, but as just explained, the
results were totally different. Hence, we decided not to include them in our discussions.

In the context of code reviews, there are some classification studies related to sentiment
analysis rather than confusion. Ahmed et al. (AHMED et al., 2017) built a dataset of 2,000
code review manually labelled comments. This dataset was used to build a training dataset
and to evaluate seven popular sentiment analysis tools. The poor performance of such
tools motivated them to create their own sentiment analysis tool: SentiCR, especially
designed for code review comments. They found Gradient Boosting Tree algorithm had
the best mean accuracy (83%), the highest mean precision (67.8%), and the highest mean
recall (58.4%) in identifying negative review comments.

Novielli et al. (NOVIELLI; GIRARDI; LANUBILE, 2018) described a benchmark study to
evaluate the performance of three sentiment analysis tools, including SentiCR (AHMED

et al., 2017), particularly customised for Software Engineering. They used four different
datasets with sentiment labels on the benchmark, including the dataset with code review
comments provided by Ahmed et al. (AHMED et al., 2017). They show that customisations
related specifically to Software Engineering can boost accuracy for off-the-shelf tools, i.e.,
not designed for Software Engineering. Specifically, supervised approaches provided the
best performance for the classifiers.

3.8 SUMMARY

In this chapter, we presented two studies conducted to tackle the problems of lack of
knowledge about confusion in code reviews and lack of tools for confusion detection. We
provided our own definition of confusion and a confusion coding scheme. We constructed
two gold standard sets: one with 1,542 general comments and other with 1,190 inline
comments. These sets are publicy available (EBERT, 2019), as well as the replication
package and the classification models for future research.

Furthermore, we built several models for confusion identification in developers’ com-
ments in code reviews. Our results show that the three models, IC-I, IC-B, and GC-I
(with stop words included), reached a considerable performance on the identification of
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confusion. We complemented the assessment of performance with the results of a quali-
tative error analysis.
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4 CONFUSION IN CONTEXT: REASONS, IMPACTS, AND COPING STRATE-
GIES

This chapter presents the study we conducted to identify the reasons for confusion, its
impacts, and the strategies developers use to cope with confusion in code reviews. The
model we built based on the reasons, impacts, and coping strategies related to confusion in
code reviews is simply called confusion in context. We start by providing a brief overview of
the problem (Section 4.1). The concurrent triangulation strategy methodology is presented
in Section 4.2. We present the results in Section 4.3. Then we discuss the implications
(Section 4.4), and the threats to validity (Section 4.5). The related work is presented in
Section 4.6. Finally, we summarise this study in Section 4.7.

4.1 OVERVIEW

In order to be able to perform code reviews, developers should understand what they are
reviewing, i.e., the code change. However, several studies show that understanding the
code change and its context during code reviews are the major challenges faced by review-
ers (BACCHELLI; BIRD, 2013; COHEN; TELEKI; BROWN, 2006; TAO et al., 2012; SUTHER-

LAND; VENOLIA, 2009; LATOZA; VENOLIA; DELINE, 2006). Such challenges can cause the
code reviews to be delayed (COHEN; TELEKI; BROWN, 2006; BACCHELLI; BIRD, 2013; TAO

et al., 2012; SUTHERLAND; VENOLIA, 2009; LATOZA; VENOLIA; DELINE, 2006). Thus, we
believe that confusion in code reviews should be properly understood, including the rea-
sons why it exists, its impacts, and how developers deal with it. The outcome of such
understanding of confusion can help to reduce the costs of code review time, and to
improve the code review and the overall development processes.

The goals of this study are threefold. Firstly, we aim to obtain empirically-driven
actionable insights for both researchers and tool builders, on what the main causes of
confusion in code reviews are. Thus, we formulate our first research question:

RQ1. What are the reasons for confusion in code reviews?
We have observed that the three most frequent reasons for confusion are missing

rationale, discussion of the solution: non-functional, and lack of familiarity with existing
code.

Secondly, while confusion can be expected to negatively affect code reviews, we would
like to identify specific impacts of confusion. By monitoring these impacts, developers and
managers can curb undesirable consequences. As such, we formulate our second research
question:

RQ2. What are the impacts of confusion in code reviews?
Our results suggest that the merge decision is delayed when developers experience con-

fusion, there is an increase in the number of messages exchanged during the discussion,
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and the review quality decreases. However, we also observed unexpected consequences
of confusion, such as helping to find a better solution. This suggests that communicating
uncertainty and doubts might be beneficial for collaborative code development, i.e., by in-
ducing critical reflection (EBERT et al., 2018) or triggering knowledge transfer (BACCHELLI;

BIRD, 2013).
Finally, we believe that understanding the strategies adopted by the developers to

deal with confusion can further inform the design of tools to support code reviewers in
fulfilling their information needs associated to the experience of confusion. As such, we
formulate our third research question:

RQ3. How do developers cope with confusion during code reviews?
The results suggest that developers try to deal with confusion by requesting infor-

mation, improving the familiarity with existing code, and discussing off-line (outside the
code review tool). We also found that confusion might simply induce developers to blindly
approve the code change, regardless of its correctness.

The main contribution of this study is a comprehensive model for confusion in
context in code reviews including reasons, impacts, and coping strategies. To address
our research questions, we implemented a concurrent triangulation strategy (EASTER-

BROOK et al., 2008) by combining a survey (‘what people think’) with analysis of the code
review comments (‘what people do’) from the dataset we built during the study presented
in Chapter 3 (published at Ebert et al. (EBERT et al., 2017)). The data collected and man-
ually annotated during the study are released to enable follow-up studies (EBERT, 2019).
Based on the analysis of this model, we formulate a series of suggestions for tool builders
and researchers.

The findings of our study complement recent research on comprehension in code re-
views, i.e., our study from Chapter 3 proposing a model to identify confusion in code
reviews, and the one by Pascarella et al. (PASCARELLA et al., 2018), focusing on under-
standing the information needs of code reviewers.

4.2 METHODOLOGY

Next, we describe how we implemented the concurrent triangulation strategy (EASTER-

BROOK et al., 2008) used to address our research questions. Concurrent triangulation
strategy is a mixed-methods approach which employs diverse methods concurrently with
the goal to corroborate, confirm, or cross-validate findings, i.e., to increase validity of
the study. In particular, when it comes to human activities, Easterbrook et al. advo-
cate triangulation since “often ‘what people say’ could be different from ‘what people
do’ ” (EASTERBROOK et al., 2008). Firstly, we conduct a survey to understand “what de-
velopers say” (Section 4.2.1). Then we analyse code review comments to understand “what
developers do” (Section 4.2.2). Finally, we compare and contrast the findings of the two
analyses (Section 4.2.3).
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4.2.1 Surveys

In literature, a theory is missing to describe what are the reasons for confusion in code
reviews, the impact of confusion on the development process, and what coping strate-
gies developers employ to deal with confusion. As such, to answer our RQs we opt for
grounded theory building (GLASER; STRAUSS, 1967; STOL; RALPH; FITZGERALD, 2016).
We implemented an iterative approach. During each iteration, we administer a survey
with developers involved in code reviews. We ask developers that already answered the
survey during one of the previous iterations to refrain from answering it again.

4.2.1.1 Survey design

The survey was designed according to the established best practices (GROVES et al., 2009;
KITCHENHAM; PFLEEGER, 2008; SINGER; VINSON, 2002; STEELE; ARONSON, 1995): prior
to asking questions, we explain the purpose of the survey and our research goals, disclose
the sponsors of our research and ensure that the information provided will be treated in a
confidential way. In addition, we inform the participants about the estimated time required
to complete the survey, and obtain their informed consent. The invitation message includes
a personalised salutation, a description of the criteria we used for participant selection,
as well as the explanation that there would not be any follow up if the respondent do not
reply. This last decision also implies that we did not send reminders.

The survey starts with the definition of confusion as provided in Section 3.2, followed
by a question requiring the participants to confirm that they understood the definition.
Next, we ask two series of questions: the questions were essentially the same, but were
first asked from the perspective of the author of the code change, and then from the
perspective of the reviewer of the change. The survey is presented in Table 10. Each
series starts with the Likert-scale question about the frequency of experienced confusion:
never, rarely, sometimes, often, and always. To ensure that the respondents interpret these
terms consistently, we provide quantitative estimates: 0%, 25%, 50%, 75% and 100% of
the time. For respondents who answered anything different from never, we pose four open-
ended questions (to get as rich as possible data (FODDY, 1993)): i) what are the reasons for
confusion, ii) whether they can provide an example of a practical situation where confusion
occurred during a code review (RQ1), iii) what are the impacts of confusion (RQ2), and
iv) how do they cope with confusion (RQ3). Finally, we ask the participants to provide
information about their experience as developers and frequency of reviewing and authoring
code changes. We ask these question at the end of the survey rather than at the beginning
to reduce the stereotype threat (STEELE; ARONSON, 1995). Prior to deploying the survey,
we discussed it with other software engineering researchers and clarified it when necessary.
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Table 10 – Confusion in Code Reviews Survey. The questions marked “*” were only used
in the first survey, “+” —only in the second and third surveys.

Electronic Consent
0. Please select your choice below. Selecting the “yes” option below indicates that: i) you have read and understood

the above information, ii) you voluntarily agree to participate, and iii) you are at least 18 years old. If you do
not wish to participate in the research study, please decline participation by selecting “No”.

Definition of Confusion
The remainder of this survey is dedicated to “confusion”. We do not make a distinction between lack of knowl-
edge, confusion, or uncertainty. For simplicity reasons, we use the “confusion” to refer to all these terms.

1. By clicking “next” you declare that you understand the meaning of confusion on this survey.
Review-Then-Commit

2.+ Have you ever taken part in a “review-then-commit” type of code review (i.e., the code is reviewed before it is
integrated into the main repository), either in the role of author or reviewer?

When reviewing code changes
3. Developers might feel confused or think that they do not understand the code they review. How often did you

feel this way when reviewing code changes?
4. What usually makes you confused when you are reviewing code changes? Please explain which factors led you

to be confused.
5. Please describe a change you have been reviewing that has confused you.
6. How does the confusion you experience as a reviewer impact code review?
7. What do you usually do to overcome confusion in code reviews? Please explain the actions you take when you

feel confused.
8.* When you do not understand a code change, do you usually express this in general comments or in inline

comments? Please explain why in the “other” field.
When authoring code changes

9. Developers who authored code changes might feel confused or think that they do not understand something
when their code is being reviewed. How often did you feel this way when your code has been reviewed?

10. What usually makes you confused during the code review when you are the author of the code changes? Please
explain which factors led you to be confused.

11. Please describe a change you have been authoring that has confused you.
12. How does confusion you experience as the code change author impact the code review?
13. What do you usually do to overcome confusion in code reviews? Please explain the actions you take when you

feel confused.
14.*When you do not understand a code change, do you usually express this in general comments or in inline

comments? Please explain why in the “other” field.
Background

15. What is your experience as a developer?
16. What is your experience as a code reviewer?
17. How often do you submit code changes to be reviewed?
18. How often do you review code changes?
19.*Do you have the merge approval right (i.e., the permission to give +2) in Gerrit at least for one software

development project?
20.*Which option would best describe yourself?

- I contribute to Android voluntarily.
- I’m employed by a company other than Google and I contribute to Android as part of my job.
- I’m employed by Google and I contribute to Android as part of my job.
- Other.

Results
21. Would you like to be informed about the outcome of this study and potential publications? Please leave a

contact email address.
22. Would you be willing to be interviewed afterwards?
23. Please add additional comments below.

4.2.1.2 Participants

The target population consists of developers who participated in code reviews either as a
change author or as a reviewer. During the first iteration, we targeted Android developers
who participated in code reviews on Gerrit. The dataset of code reviews developed
during the study described in Chapter 3 provides 4,645 email addresses of Android
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developers. We used this list to contact them by email and evaluate the response rate.
In the subsequent iterations, the survey was announced on Facebook and Twitter.
As the exact number of developers participating in code reviews reached by our posts
on social media cannot be known, we do not report the response rate for the follow-up
surveys.

4.2.1.3 Data analysis

To analyse the survey data, we use a card sorting approach (ZIMMERMANN, 2016). It is a
manual technique to create mental models and derive taxonomies from text. We analyse
the survey responses from the first iteration using open card sorting (ZIMMERMANN, 2016),
i.e., topics were not predefined, but emerged and evolved during the sorting process. After
each subsequent survey iteration, we use the results of the previous iteration to perform
closed card sorting (ZIMMERMANN, 2016), i.e., we sort the answers of each survey iteration
according to the topics emerging from the previous one. If the closed card sorting succeeds,
this means that the saturation has been reached and sampling more data is not likely to
lead to the emergence of new topics (FINFGELD-CONNETT, 2014; LENBERG et al., 2017).
In such a case, the iterations stop. If, however, during the closed card sorting additional
topics emerge, another iteration is required.

To facilitate analysis of the data, we use axial coding (KITCHENHAM; PFLEEGER,
2008) to find the connections among the topics and group them into dimensions. These
dimensions emerge and evolve during the final phase of the sorting process, and they
represent a higher level of abstraction of the topics.

As we have multiple iterations and multiple surveys answered by different groups of
respondents, a priori it is not clear whether the respondents can be seen as representing
the same population. Indeed, it could have been the case that, e.g., respondents of the
second survey happened to be less inclined to experience confusion than the respondents of
the third survey and the reasons of their confusions are very different. This is why we first
check similarity of the groups of respondents in terms of their experience as developers and
code reviewers, frequency of submitting changes to be reviewed and reviewing changes,
as well as frequency of experiencing confusion. If the groups of respondents are found
to be similar, we can consider them as representing the same population and merge the
responses. If the groups of respondents are found to be different, we treat the groups
separately.

To perform the similarity check, we use two statistical methods: i) analysis of similar-
ities (ANOSIM) (CLARKE, 1993), which provides a way to statistically test if there is a
significant difference between two or more groups of sampling units, and ii) permutational
multivariate analysis of variance using distance matrices (ADONIS) (ANDERSON, 2001;
MCARDLE; ANDERSON, 2001).1

1 Both ANOSIM and ADONIS are available as functions in the R package vegan.
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4.2.2 Analysis of Code Review Comments

To triangulate the survey findings for the RQs, we perform an analysis of code review
comments. Once again, we use the dataset of Android code reviews from the study of
Chapter 3. However, we only considered comments from the groups hedges and other.
We decided not to include the comments from the questions group because they had the
lowest agreement on confusion among the raters. Moreover, the intentions of questions
have been shown to be one of the main reasons for misclassification of no confusion
comments by our classification models (cf. Section 3.5.2.1). Those facts motivated us to
conduct a specific study on that group (cf. Chapter 5). The code reviews of Android
are supported by Gerrit, which enables communication between developers during the
process by using general and inline comments. The former are posted in the code review
page itself, which presents the list of all general comments, while the inline comments
are included directly in the source code file and usually reference a word, a line or a
group of lines. The dataset comprises 307 code review comments manually labelled by the
researchers as confusing: 156 are general and 151 are inline comments.

Similarly to the analysis of the survey data, we use card sorting to extract topics from
the code review comments. We conduct an open card sorting of the general comments to
account for the possibility of divergent results, i.e., we did not want to use the results
from the surveys because what developers do might differ from what they think they do,
and the emergent topics might a priori be different from those obtained when analysing
the survey data. To confirm the topics emergent from the general comments, we then
perform a closed card sorting on the inline comments.

4.2.3 Triangulating the findings

The goal of concurrent triangulation is to corroborate the findings of the study, increasing
its validity. Thus, following Easterbrook et al. (EASTERBROOK et al., 2008) work, we expect
to identify some differences between ‘what people say’ (survey) and ‘what people do’
(code review comments). Hence, if the topics extracted from the surveys and code review
comments disagree, we conduct a new card sorting round only on the cards associated
with topics discovered on the basis of the survey, but not on the basis of the code review
comments, or vice versa. In order not to be influenced by the results of the previous card
sorting, we perform open card sorting and exclude the researchers who participated in
the previous card sorting rounds.

Finally, in order to finalise the comprehensive model of confusion in context in code
reviews, we perform the consistency check within the topics and deduction of more generic
topics, as recommended by Zimmermann (ZIMMERMANN, 2016), as well as a consistency
check across RQs (i.e., reasons, impacts, and coping strategies) and emergent dimensions.
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4.3 RESULTS

We discuss the application of the research method in practice (Section 4.3.1), and anal-
yse similarity between the responses received at each one of the survey iterations (Sec-
tion 4.3.2). Then, we present the demographics results from the survey (Section 4.3.3),
and discuss reasons for confusion (RQ1, Section 4.3.4), its impact (RQ2, Section 4.3.5),
and the strategies employed to cope with it (RQ3, Section 4.3.6).

4.3.1 Implementation of Approach

The implementation of the approach designed in Section 4.2 is shown in Figure 12. Individ-
uals involved in the card sorting are graduate students in computer science or researchers.

Firstly, following the iterative approach we have performed three iterations since sat-
uration has been reached. Among the 4,645 emails sent during the first iteration, 880
emails have bounced; hence, 17 valid responses correspond to the response rate 0.45%.
Such response rate was unexpected: indeed, the common response rates in Software En-
gineering range between 15% and 20% (PALOMBA et al., 2015; VASILESCU; FILKOV; SERE-

BRENIK, 2015; VASILESCU et al., 2015), and sometimes much higher response rates are
reported (PALOMBA et al., 2018). We conjecture that the low response rate might have
been caused by presence of inactive members or one-time-contributors (LEE; CARVER;

BOSU, 2017). For the second and the third survey rounds, the number of responses are 24
and 13 respectively; the response rate could not be computed.

The open card sorting of the first survey resulted in 52 topics related to the reasons
(25), impacts (14) and coping strategies for confusion (13). The closed card sorting of
the second survey resulted in three additional topics: two for impacts and one for the
coping strategies. Finally, the closed card sorting of the third survey resulted in no new
topics. The open card sorting on the general comments resulted in 16 topics related only
to the reasons for confusion, i.e., no topics related to the impacts and coping strategies
appeared. Then, the closed card sorting on the inline comments resulted in no new topics.

During the triangulation, we verified that what developers said about the reasons
for confusion (survey) has little agreement with what developers said in the code review
comments. Only six topics were found both among the survey answers and code review
comments, 19 topics appeared only in the survey and 10 topics—in the code review
comments. Thus, as explained in Section 4.2.3, we decided to conduct another card sorting
on the divergent 29 topics. This time, since it was an open card sorting, from the cards
belonging to divergent topics we identified 42 topics.

As the last step, we finalised the comprehensive model and obtained a total of 57
topics related to reasons (30), impacts (14), and coping strategies (13). After finalising
the topics, we observe that 70% (21/30) of them have cards both from the surveys and
from the review comments. Moreover, the shared topics cover the lion’s share of the cards:
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Surveys 

Code Review 
Comments 

Card Sorting 

17 valid 
responses 

1st Survey 

24 valid 
responses 

2nd Survey 

13 valid 
responses 

3rd Survey 

• From: Nov 13, 2017 
• Till: Dec 20, 2017 
• Last response: Dec 8, 2017 
• Response rate: 0.45% 

• From: Dec 20, 2017 
• Till: Jan 25, 2018 
• Last response: Jan 16, 2018 

• From: Mar 20, 2018 
• Till: Apr 10, 2018 
• Last response: Mar 22, 2018 

156 General 
Comments 

151 Inline 
Comments 

52 topics 

open 

Felipe, Weslley, Tianyu 

3 new 
topics 

closed 

Felipe, Weslley, Tianyu 

0 new 
topics 

closed 

Felipe, Fernando 

16 topics 

open 

Felipe, Weslley, Tianyu 

0 new 
topics 

closed 

Felipe, Weslley, Tianyu 

• 25 reasons 
• 14 impacts 
• 13 coping strategies 

• 25 reasons 
• 16 impacts 
• 14 coping strategies 

• 25 reasons 
• 16 impacts 
• 14 coping strategies 
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Figure 12 – Implementation of the approach: three survey rounds, general and inline com-
ments, the triangulation, and finalisation rounds.

94.9% of the survey cards and 90.7% of the code review comments’ cards.
As explained above, we identified the following dimensions using axial coding, common

for the three RQs:

• review process (18 topics): the code review process, including issues that affect
the review duration;

• artifact (15 topics): the system prior to change, code change itself and its docu-
mentation or the system after change;

• developer (15 topics): topics regarding the person implementing or reviewing the
change;

• link (9 topics): the connection between developers and artifacts, e.g., when a de-
veloper indicates that they do not understand the code.

Examples of topics of different dimensions can be found in Sections 4.3.4, 4.3.5 and
4.3.6.
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Figure 13 – Experience of developers and reviewers.

4.3.2 Analysis of Similarity of the Surveys’ Results

Firstly, we verified the similarity of the second and third surveys. Since both were pub-
lished on Facebook and Twitter, we expect the values to be similar, i.e., respondents
to represent the same population. Using both ANOSIM (𝑅 = −0.0171 and 𝑝-value =
0.542) and ADONIS (𝑝-value = 0.975), we could not observe statistically significant dif-
ferences between the groups, i.e., the answers can be grouped together.

Then, we checked the similarity between the answers to the first survey (Android
developers) and the answers to the second and the third surveys taken together. The
results of the ANOSIM analysis, 𝑅 = 0.126 and 𝑝-value = 0.01, showed that the difference
between the groups is statistically significant. However, the low 𝑅 means that the groups
are not so different (values closer to 1 mean more of a difference between samples), i.e., the
overlap between the surveys is quite high. This observation is confirmed by the outcome of
the ADONIS test: the 𝑝-value = 0.191 is above the commonly used threshold of statistical
significance (0.05). Based on those results, we conclude that the respondents represent
the same population of developers and report the results of all three surveys together.

4.3.3 Demographics of the survey respondents

The respondents are experienced code reviewers, 80% (38 of 47 respondents that answered
questions about demographics) have more than two years of experience reviewing code
changes. The experience of our population as developers, i.e., authoring code changes, is
even higher: 93% (44 respondents) have been developing for more than two years. The
experience of code change authors and reviewers are presented in Figure 13. The number
of years of experience as developers is higher than the number of years of experience
as reviewers: this is expected because reviewing tasks are usually assigned only to more
experienced individuals (WESEL et al., 2017).
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Figure 14 – Frequency of code review submissions and code reviews conducted.

Respondents are active in submitting changes for review, and even more active in
reviewing changes: almost 49% (23 developers) submit code reviews several times a week,
while for reviewing this percentages reaches 72% (34) (cf. Figure 14).

The frequencies with which code change authors and code reviewers experience confu-
sion are summarised in Figure 15. On the one hand, when reviewing code changes, about
41% (20) of the respondents feel confusion at least half of the time, and only 10% (5)
do not feel confusion. On the other hand, when authoring code changes, only 12% (6) of
the respondents feel confusion at least half of the time, and 35% (17) of the respondents
do not feel confusion. Comparing the figures, we conclude that confusion when reviewing
is very common, and that developers are more often confused when reviewing changes
submitted by others as opposed to when authoring the change themselves.

We also applied the 𝜒2 test to check whether experience influences frequency of confu-
sion being experienced. The test was not able to detect differences between more and less
experienced developers in terms of frequency of confusion being experienced as a devel-
oper, nor between more and less experienced reviewers in terms of frequency of confusion
being experienced as a reviewer (𝑝 ≃ 0.26 and 0.09, respectively).

4.3.4 RQ1. What are the reasons for confusion in code reviews?

We found 30 reasons for confusion in code review (see Table 11). They are spread over all
the dimensions, with the artifact and review process being the most prevalent.

There are seven reasons for confusion related to the code review process. The most
common is organisation of work, which comprises reasons such as unclear commit message
(e.g., “when the description of the pull request is not clear” — R50), the status of the
change (e.g., “I’m unsure about the status of your parallel move changes. Is this one ready
to be reviewed? [...]”)2, or the change addressing multiple issues (e.g., “change does more
2 https://android-review.googlesource.com/c/132581
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Figure 15 – Frequency of confusion for developers and reviewers.

than one things” — R31). The second and third reasons most cited are, respectively,
confusion about the tools, e.g., “I don’t know why the rebases are causing new CLs”3, and
the need of the code change, e.g., “If I understand correctly, this change might not be
relevant any more”.4

The artifact dimension is the largest group with 11 topics related to the reasons for
confusion. The most popular is the absence of the change rationale, e.g., “I do not fully
understand why the code is being modified” (R20). Discussion of the solution related to
non-functional aspects of the artifact is the second largest topic and it comprises reasons
such as poor code readability (e.g., “Poorly implemented code” — R43), and performance
(e.g., “is this true? i can’t tell any difference in transfer speed with or without this patch. i
still get roughly these numbers from ‘adb sync’ a -B build of bionic: [...]”).5 The third most
frequent reason indicates that developers experience confusion when they are unsure about
the system behavior, e.g., “what is the difference between this path (false == unresolved)
and the unresolved path below. [...]”.6

Six reasons for confusion are related to the developer dimension. Disagreement among
the developers is the prevalent topic, e.g., “[...] If actual change has a big difference from
my expectation, I am confused.” (R11). The second most cited reason is the misunder-
standing of the message’s intention, e.g., “Sometimes I don’t understand general meaning
(need to read several times to understand what person means)” (R13).

Six reasons are related to the link between the developer and the artifact. The most
popular one is the lack of familiarity with existing code, e.g., “Lack of knowledge about
the code that’s being modified.” (R37) followed by the lack of programming skills, e.g.,
“sometimes I’m confused because missing some programming” (R13), and the lack of un-
3 https://android-review.googlesource.com/c/71976
4 https://android-review.googlesource.com/c/33140
5 https://android-review.googlesource.com/c/91510
6 https://android-review.googlesource.com/c/83350
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Table 11 – The reasons, impacts and coping strategies developers use to deal with confu-
sion; in the parenthesis are the numbers of cards.

Reasons Impacts Coping strategies
30 topics (507) 14 topics (98) 13 topics (116)
Organisation of work (17) Delaying (31) Improved organisation

Review Issue tracker, version control (7) Decreased review quality (11) of work (5)
process Unnecessary change (6) Additional discussions (11) Delaying (2)
18 topics Not enough time (3) Blind approval (8) Assignment to
(120) Dependency between changes (3) Review rejection (4) other reviewers (1)

Code ownership (2) Increased development effort(4) Blind approval (1)
Community norms (2) Assignment to other reviewers (2)
Missing rationale (66) Better solution (1) Small, clear changes (4)
Discussion of the solution: non-func. (49) Incorrect solution (1) Improved documentation (4)
Unsure about system behavior (37)
Lack of documentation (29)

Artifact Discussion of the solution: strategy (29)
15 topics Long, complex change (25)
(300) Lack of context (19)

Discussion of the solution: correctness (14)
Impact of change (11)
Irreproducible bug (6)
Lack of tests (5)
Disagreement (18) Decreased confidence (10) Information requests (36)

DeveloperCommunicative intention (9) Abandonment (6) Off-line discussions (12)
15 topics Language issues (3) Frustration (5) Providing/accepting
(124) Propagation of confusion (3) Propagation of confusion (2) suggestions (10)

Fatigue (1) Disagreement resolution (6)
Noisy work environment (1)
Lack of familiarity with the existing code (47) Improved familiarity with

Link Lack of programming skills (40) the existing code (28)
9 topics Lack of understanding of the problem (21) Testing the change (5)
(177) Lack of understanding of the change (17) Improved familiarity with

Lack of familiarity with the technology (14) the technology (2)
Lack of knowledge about the process (3)

derstanding of the problem, e.g., “I’m embarrassed to admit it, but I still don’t understand
this bug.”.7

RQ1 Summary: We found a total of 30 reasons for confusion. The most prevalent
are missing rationale, discussion of the solution: non-functional, and lack of familiar-
ity with existing code. We observe that tools (code review, issue tracker, and version
control) and communication issues, such as disagreement or ambiguity in commu-
nicative intentions, may also cause confusion during code reviews.

4.3.5 RQ2. What are the impacts of confusion in code reviews?

The total number of topics related to the impacts of confusion is 14 (see Table 11). They
are related to the dimensions of the review process, artifact, and developer. There was no
topic related to the link between the developer and the artifact.
7 https://android-review.googlesource.com/c/170280
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We identified seven impacts of confusion related to the code review process. Delaying
the merge decision is the most popular impact, e.g., “The review takes longer than it
should” (R46). The second and third most cited impacts are that confusion makes the
code review quality decrease, e.g., “Well I can’t give a high quality code review if I don’t
understand what I am looking at” (R5), and an increase in the number of messages ex-
changed during the discussion, e.g., “Code reviews take longer as there’s additional back
and forth” (R1). One interesting impact of confusion is the blind approval of the code
change by the developer, even without understanding it, e.g., “Blindly approve the change
and hope your coworker knows what they’re doing (it is clearly the worst; that’s how seri-
ous bugs end up in production)” (R16). Confusion may also lead developers to just reject
a code change, e.g., “I’m definitely much more likely to reject a ’confusing’ code review.
Good code, in my experience, is usually not confusing” (R36).

There are only two impacts of confusion related to the artifact itself. Firstly, the
developer may find a better solution because of the confusion, e.g., “It has not only bad
impact but also good impact. Sometimes I can encounter a better solution than my thought”
(R11). Secondly, the code change might be approved with bugs, as the reviewer is not able
to review it properly due confusion, e.g., “Sometimes repeated code is committed or even
a wrong functionality” (R24). The incorrect solution impact is related to decrease review
quality, however, the perspective is of the code change containing a bug in production
rather than of the reviewing process.

Finally, there are four impacts of confusion related to the developer. The most quoted
impact is the decrease of self confidence, either by the author, e.g., “I can’t be confident
my change is correct” (R38), or by the reviewer, e.g., “I feel less confident about approving
it” (R48). Another impact is the developer giving up, abandoning a code change instead
of accounting for the reviewer’s comments, e.g., “other times I just give up” (R14), or
leave the project, e.g., “dissociated myself a little from the codebase internally” (R14).
We also found emotions being triggered by confusion, such as anger (e.g., “It pissed me
off ” — R3) and frustration (e.g., “Cannot be an effective reviewer—can replace me with
a lemur” — R40). Finally, confusion can be contagious, e.g., “It often causes confusion
spreading to other reviewers” (R12).

RQ2 Summary: We identified 14 different impacts of confusion in code reviews.
The most common are delaying, decrease of review quality, and additional discussions.
Some developers blindly approve the code change, regardless the correctness of it;
other impacts include frustration, abandonment and decreased confidence.

4.3.6 RQ3. How do developers cope with confusion?

We found 13 topics describing the strategies developers use to deal with confusion in code
reviews. Four of them are related to the review process. The most common is to improve
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the organisation of work, such as making clearer commit messages, e.g., “Leave comments
on the files with the main changes” (R50). It is followed by spending more time and
delaying the code review, e.g., “I need to spend much more time” (R13). Assigning other
reviewers is also a strategy adopted by developer, e.g., “Sometimes I completely defer to
other reviewers” (R48). Interestingly, blind approval is also a strategy developers use to
cope with confusion, i.e., it is not just an impact, e.g., “assume the best, (of the change)”
(R34).

Two strategies are related to the artifact. Developers make the code change smaller,
e.g., “Also I ask large changes to be broken into smaller” (R31), and clearer, e.g., “Try
to make the actual code change clear” (R12). They also improve the documentation by
adding code comments, e.g., “A good description in the commit message describing the
bug and the method used to fix the bug is also helpful for reviewers” (R5).

The dimension with the most quotes is related to the developers themselves. Request-
ing for information on the code review tool itself is the most quoted among developers,
e.g., “Put comment and ask submitter to explain unclear points” (R15). Developers also
take the discussions off-line, i.e., using other means to reach their peers, e.g., “schedule
meetings” (R50) or “ask in person” (R1). Providing and accepting suggestions is also
mentioned as a good way to cope with confusion. It includes strategies such as being open
minded to the comments of their peers, e.g., “Being open to critical review comments”
(R12), and providing polite criticism, e.g., “Trying to be ’a nice person’. Gently criticizing
the code” (R3). Disagreement resolution is also a good strategy to cope with confusion,
e.g., “I try to explain the reasoning behind the decisions/assumptions I made” (R31). The
use of criticism by developers in code reviews was also found in our study from Chapter 5
(published as Ebert et al. (EBERT et al., 2018)), but that study focused on the intention
of questions in code reviews.

Regarding the link between the developer and the artifact, there are three strategies
developers use to cope with confusion. Firstly, to study the code or the documentation,
e.g., “It forces me to dig deeper and learn more about the code module to make sure that
my understanding is correct (or wrong)” (R12), and “Read requirements documentation”
(R24). Secondly, to test the code change, e.g., “play with the code” (R9). Finally, devel-
opers also use external sources to improve their knowledge about the technology, e.g.,
“Sometimes further research on the web [...]” (R25).

RQ3 Summary: We have identified 13 coping strategies. Common strategies in-
clude information requests, improved familiarity with the existing code, and off-line
discussions.
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4.4 DISCUSSIONS AND IMPLICATIONS

The main contribution of our study is the empirically-driven comprehensive model of
confusion in context, with the reasons, impacts, and coping strategies for confusion. Sec-
tion 4.4.1 provides general discussion of our results. Our study suggests practical, action-
able implications for the tool builders (Section 4.4.2) as well as insights and suggestions
for researchers (Section 4.4.3).

4.4.1 Discussions

Confusion is an inherent part of human problem-solving, which normally arises from in-
formation and goal-oriented assessment of situations (MANDLER, 1984; MANDLER, 1990).
Evidence from Psychology research demonstrates that individuals engaged in a complex
cognitive task continually assimilate new information into existing knowledge structures
in order to achieve completion of their tasks (D’MELLO et al., 2014). Any possible mis-
match between expectations and (lack of) previous knowledge might be responsible for
triggering confusion. Indeed, 92 cards (over 290) for reasons for confusion are associated
to ‘discussion’ about the artifact, i.e., discussion of the solution: non-functional, strategy,
and correctness. Symmetrically, common coping strategies involve information requests
and off-line discussions.

Confusion might trigger in individuals the experience of negative emotions. Such neg-
ative emotions depend on the context, the amount of mismatch between expectation and
reality, and the extent to which completion of tasks is threatened (STEIN; LEVINE, 1991).
This is in line with the observation of decreased confidence, abandonment, and emotions
such as frustration and anger, among the impacts of confusion. Early detection of confu-
sion (EBERT et al., 2017) becomes crucial for preventing contributors’ burnout and loss of
productivity (MÄNTYLÄ et al., 2016). Such situations might even cause the abandonment
of the project, which is undesirable as it eventually leads to undesired turnover; since de-
velopers focusing on documentation are more susceptible to turnover than those working
on code (LIN; ROBLES; SEREBRENIK, 2017), project abandonment is likely to exacerbate
lack of documentation further increasing confusion within the project.

A possible antidote to negative emotions, identified as a coping strategy by the survey
respondents, is being open minded when providing and accepting suggestions. This atti-
tude is often mandated by codes of conducts adopted by open source projects (TOURANI;

ADAMS; SEREBRENIK, 2017), requiring, e.g., to “gracefully accept constructive criticism”
and “be respectful of differing viewpoints and experiences”. One should be aware, how-
ever, that imposing such rules might lead to emotional labor (SEREBRENIK, 2017), i.e.,
the process by which individuals are expected to handle their feelings in harmony with
the rules and guidelines defined by the organization.
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4.4.2 Implications for Tool Builders

Code reviews are supported by tools such as Gerrit. Currently, the only feature of
Gerrit that we can relate to confusion reduction is flagging large code changes. Indeed,
large, complex changes are among the most popular reasons for confusion in our model.
As a strategy to deal with this issue, developers suggest to split big changes into smaller,
clearer ones. This is consistent with the earlier findings (BARNETT et al., 2015; TAO;

KIM, 2015; PASCARELLA et al., 2018), envisioning the emergence of tools enabling early
detection of splittable changes, i.e., before the pull request is submitted, in order to avoid
both spending additional time in identifying such patches and asking the author re-work
the change to reduce its complexity and likelihood of the discussion (THONGTANUNAM et

al., 2017).
Based on our results, further tool improvements can be envisioned. We observe that the

second most popular coping strategy is to improve familiarity with existing code. The bur-
den of this task might be reduced if code review tools could provide the task context (LA-

TOZA; VENOLIA; DELINE, 2006). Similarly, a summary of the change (PANICHELLA, 2018;
RIGBY; STOREY, 2011) could be beneficial to overcome confusion due to lack of under-
standing of the change. Organisation of work can be improved by tools capable of au-
tomatically generating commit messages (LINARES-VÁSQUEZ et al., 2015; HUANG et al.,
2017), disentangling commits performing multiple tasks (DIAS et al., 2015) and combining
multiple commits performing one task (ARIMA; HIGO; KUSUMOTO, 2018). Furthermore,
information retrieval tools able to understand written design discussions occurring in pull
requests (VIVIANI et al., 2018a) could be integrated into code review tools to extract ratio-
nale, implicit knowledge, and other contextual information otherwise not available during
the review process. Integrating such information into the documentation might prevent
confusion due to a missing rationale, lack of context, or doubt about necessity of a change.

Another reason for confusion is the difficulty in assessing the impact of the change.
Integration of change impact analysis tools might be thus beneficial. Similarly, integration
of tools assessing the test coverage of a change might keep developers from committing
changes with low test coverage, thus avoiding confusion due to lack of tests. Information
about test coverage could be also integrated in the pull request, i.e., by mean of badges
as done by tools such as Coveralls.8

Developers also report off-line discussions as a strategy to quickly resolve disagree-
ment as well as ambiguities in communicative intentions. This evidence is consistent with
findings from previous research by Pascarella et al. (PASCARELLA et al., 2018), who also
envision the integration of synchronous communication functions into code review tools
to enable traceability of decisions and explanation provided, and, allow their integration
into documentation for future reference.
8 https://coveralls.io
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Going beyond code review tools, developers experience confusion in using issue track-
ing or version control systems. Hence, these tools can be improved to facilitate their
usage.

4.4.3 Implications for Researchers

In our model of confusion in context, we observed reasons for confusion are far more than
coping strategies. Indeed, strategies are derived by the analysis of developers’ self-report in
the survey and represent what they already do to deal with confusion. Conversely, reasons
for confusion are defined based on the analysis of both survey responses and developers’
comments in code reviews. Of course, a symmetry is observed for those reason-strategy
couples addressing the same cause of confusion, e.g., small, clear changes are offered as
a solution for confusion due to long, complex changes; information requests can address
difficulties in understanding the others’ communicative intentions; and lack of familiarity
with existing code is addressed by studying the code and its documentation (improved
familiarity with existing code). A significant amount of reasons, though, are not addressed.
Addressing these topics with follow-up studies might be beneficial to identify what could
be done and how, in order to improve code review, in addition to what is already done
and reported by developers.

We observed that the assignment of other reviewers in the discussion is either an
impact and a strategy developers adopt to deal with confusion. Thus, confusion can be
beneficial as to contributing to decrease the number of bugs in the software as more
reviewers tend avoid bugs (BAVOTA; RUSSO, 2015; MCINTOSH et al., 2014). Moreover, the
inclusion of more people in the code review increases their awareness of the code change,
i.e., confusion resolution contributes to knowledge sharing. However, involving additional
reviewers induces additional workload, while reviewers expertise might already be scarce.
Indeed, Ruangwan et al. have observed that 16%–66% review requests have at least one
invited reviewer who did not respond to the invitation (RUANGWAN et al., 2018). This
is why research should consider both early detection of confusion alleviating the need of
involving additional reviewers, and more precise recommendation of reviewers for a given
code change (THONGTANUNAM et al., 2015).

Our results show that presence of confusion causes developers to move discussion
off-line, i.e., outside the code review tool. This finding is similar to earlier observa-
tions (ARANDA; VENOLIA, 2009), suggesting that despite the omnipresence of platforms
such as Gerrit and GitHub fostering transparency of software development, cases ex-
perienced as confusing sometimes remain invisible. This finding might threaten validity
of previously published studies of code reviews that have been solely based on mining
digital trace data. More comprehensive research methods should therefore be sought.

The most popular coping strategy is information requests. So far, little research was
conducted on information needs in code reviews (EBERT et al., 2018; PASCARELLA et al.,
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2018). Our study from Chapter 5 (published as Ebert et al. (EBERT et al., 2018)) shows
that almost half of the developers’ questions have the intention to seek for some kind
of information, such as confirmation, information, rationale, clarification, and opinion.
The information needs expressed by developers during code reviews (PASCARELLA et al.,
2018) are closely related to the reasons for confusion in Table 11. Indeed, suitability of an
alternative solution (PASCARELLA et al., 2018) is related to the discussion of the solution
strategy, splittable (PASCARELLA et al., 2018) to long, complex change and specialised
expertise to lack of familiarity with technology. We believe, therefore, that confusion may
trigger both of the requests for information (EBERT et al., 2018) and the information
needs (PASCARELLA et al., 2018). Hence, we see a clear venue for researchers to understand
better both the information needed during a code review and the ways developers aim
at obtaining it. Using this understanding, one should try to automatise supplying the
relevant information to resolve confusion.

4.5 THREATS TO VALIDITY

As any empirical study, our work is subject to several threats of validity (RUNESON et al.,
2012). We identified three kinds of threats to its validity: construct, internal, and external,
all of which are discussed below.

Construct validity. The threats to construct validity concern the relation between
the concept being studied and its operationalisation. In particular, it is related to the risk
of respondents misinterpreting the survey questions. To reduce this risk we included our
own definition of confusion and requested the respondents to confirm that they understood
it. For the same reason, we always anchored the frequency questions and adhered to well-
known survey design recommendations (GROVES et al., 2009; KITCHENHAM; PFLEEGER,
2008; SINGER; VINSON, 2002; STEELE; ARONSON, 1995). We believe that this helps to
diminish misunderstanding of this concept during the survey. Furthermore, despite fol-
lowing all best recommendations to build and deploy a survey, we used both closed and
open-ended questions to get as much data as possible.

Internal validity. The threats to internal validity pertains to inferring conclusions
from the data collected. The card sorting adopted in our work is inherently subjective
because of the necessity to interpret text. To reduce subjectivity, every card sorting step
has been carried out by several researchers. Moreover, to assure the completeness of
the topics related to the reasons, impacts and confusion coping strategies, we conducted
several survey iterations until the data saturation has been achieved, and augmented the
insights from the surveys with those from the code review comments. As an additional
step, we also double checked the reasons for confusion with an additional card sorting.

External validity. The threats to external validity are related to the generalisability
of the conclusions beyond the specific context of the study. Our first survey targeted only a
single project: Android. However, the second and the third ones targeted a general soft-
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ware developer population. Statistical analysis has not revealed any differences between
the respondents of the different surveys suggesting that the answers obtained are likely to
reflect opinions of the code review participants, in general. To complement the surveys, we
consider 307 code review comments from Gerrit. While the functionality of Gerrit is
typical for most modern code review tools, developers using more advanced code review
tools do not necessarily experience confusion in the same way. For instance, Collab-
orator9 supports custom templates and checklists that, if properly configured, might
require the change authors to indicate rationale of their change, reducing the importance
of missing rationale from Table 11.

4.6 RELATED WORK

In this section, we discuss the work related to confusion in code reviews. We also discuss
about studies related to what is needed to understand code changes.

Tao et al. (TAO et al., 2012) investigated how the understanding of code changes affects
the development process. They conducted surveys and follow-up emails with software
designers, testers, and software managers at Microsoft. They shown that rationale is
the most important information for understanding a code change. However, respondents
mentioned that code changes can be easily understood if a good description is provided.
They discovered that reviewers could benefit more from the code-exploration features
provided by common IDEs (e.g., call hierarchy from Eclipse) when they are exploring the
change context and estimating its risk.

Ram et al. (RAM et al., 2018) aimed to obtain an empirical understanding of what
makes a code change easier to review. They empirically defined reviewability as how
the code change is: i) explained (e.g., in the change description), ii) properly sized and
self-contained (e.g., small changes), and iii) aligned with the coding style of the project.
They researched academic literature papers, and also blogs and white papers, interviewed
professional developers, and evaluated a tool to rate the reviewability of code changes.
They found that reviewability is affected by several factors, such as the change description,
size, and coherent commit history.

Uwano et al. (UWANO et al., 2006) proposed the use of eye tracking to characterise
the performance of developers performing code reviews. They developed a system which
captures the source code line number the reviewer’s eye is looking at. It is also able to
record the transition from a line to another when the reviewer’s eyes move, as well as
the time spent at each line. Their system was used to perform an experiment with five
students reviewing code changes. As result, they identified a specific pattern in reviewer’s
eyes: “scan”. This pattern is characterised by the reviewer’s action of reading the entire
9 https://smartbear.com/product/collaborator/overview
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code before investigating in details each line. Furthermore, reviewers who did not spend
sufficient time for the scan tend to take more time for finding defects.

Gopstein et al. (GOPSTEIN et al., 2017) introduced the term atom of confusion which
is the smallest code pattern that can reliably cause confusion in a developer. Through
a controlled experiment with developers, they studied the prevalence and significance
of the atoms of confusion in real projects. They shown that the 15 known atoms of
confusing occur millions of times in programs like the Linux kernel and GCC, appearing
on average once every 23 lines. They reported a strong correlation between these confusing
patterns and bug-fix commits, as well as a tendency for confusing patterns to be eventually
commented.

Pascarella et al. (PASCARELLA et al., 2018) investigated, by analysing code review com-
ments, what information reviewers need to perform a proper code review. They analysed
threads of comments which started from a reviewer’s question from a total of 900 code
reviews. Additionally, semi-structured interviews and one focus group with developers
were conducted to understand the perceptions of the code review needs from developers.
They found seven high-level information needs, such as the suitability of an alternative
solution, the correct understanding of the code change, rationale, and the context of the
code change.

The work presented in this study is complementary with respect to the ones discussed
so far. To the best of our knowledge, this is the first study that aims at building a
comprehensive model of what make developers confused during code reviews, their impacts
and what strategies do developers implement to overcome confusion.

4.7 SUMMARY

In this chapter, we tackled the problem of lack of knowledge about confusion in code
reviews by building a comprehensive model for confusion in context. This model includes
the reasons and impacts of confusion, as well as the coping strategies adopted by develop-
ers. We used a concurrent triangulation strategy combining a series of developer’s surveys
and an analysis of code review comments.

We found 30 reasons for confusion, with the most common ones being missing ra-
tionale, discussion of the solution: non-functional, and lack of familiarity with existing
code. Among the 14 impacts of confusion, the prevalent are delaying, decrease of review
quality, and additional discussions. Finally, developers employ 13 strategies to cope with
confusion, such as information requests, improve the familiarity with the existing code,
and off-line discussions. Our study has several implications for both tool builders and
researchers. Code review tools could be improved by integrating information that can
reduce confusion, e.g., related to rationale, test coverage or impact of the change. Re-
searchers should investigate possible relations between confusion and information needs,
as well as between confusion and migration of code review discussions to off-line channels.
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5 COMMUNICATIVE INTENTIONS OF QUESTIONS

Communicative intentions are one of the reasons for confusion related to the developer
dimension of code reviews. Furthermore, the error analysis of our classification models
shows that intention of questions strongly influences the misclassification of no confu-
sion comments. As such, in this chapter, we present an exploratory, in-depth study of
communicative intention of developers’ questions in code reviews.

A brief overview is presented in Section 5.1, and the background related to commu-
nicative intention is discussed in Section 5.2. The methodology used in this study is shown
in Section 5.3. Section 5.4 presents the results. Then we discuss the results and their im-
plications in Section 5.5. Section 5.6 discusses the threats to validity, and Section 5.7, the
related work. Lastly, we summarise this study in Section 5.8.

5.1 OVERVIEW

As discussed in Chapter 2, during a code review developers might identify a defect, sug-
gest a better solution, or ask about the rationale behind the implementation choices.
When reviewing code changes, developers might provide either general or inline com-
ments. General comments are posted in the code review page itself, which presents the
list of all general comments as threads of messages. Inline comments are posted directly
into the source code file and can reference a word, a line, or a group of lines. They are
intended to be a dialogue between the reviewer and the code change author, as recognised
by developers themselves, e.g., Alan Fineberg, software engineer at Yelp: “The reviewer
then goes through the diff, adds inline comments on review board and sends them back.
[...] The reviews are meant to be a dialogue, so typically comment threads result from the
feedback”1. As such, we focus on questions extracted from inline comments.

Code review discussions represent an invaluable source of information ready to be
mined for i) extracting information about a software project and its evolution (VIVIANI

et al., 2018a), and ii) understanding how developers conduct code review, i.e., which
understanding needs they try to fulfil (BACCHELLI; BIRD, 2013), and what comments
they perceive as useful (BOSU; GREILER; BIRD, 2015; EFSTATHIOU; SPINELLIS, 2018). We
believe that the identification of communicative intentions expressed by developers in their
comments, such as making a direct suggestion, requesting a clarification, and expressing
disagreement, is essential to this latter perspective. In line with this view, Viviani et
al. (VIVIANI et al., 2018a) recently proposed to mine developers’ discussions in pull requests
to extract design information that explicitly documents design decisions (VIVIANI et al.,
2018b), based on the analysis of the dialogue argumentative structure (VIVIANI et al.,
1 Quoted by Marty Stepp in their slides <https://courses.cs.washington.edu/courses/cse403/13sp/

lectures/10-codereviews.pdf>

https://courses.cs.washington.edu/courses/cse403/13sp/lectures/10-codereviews.pdf
https://courses.cs.washington.edu/courses/cse403/13sp/lectures/10-codereviews.pdf
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2018a). Specifically, they argue in favour of future research aimed at developing approaches
able to discover design elements in developers’ discussions.

Furthermore, identification of the meaning of non-literal statements is also a well-
known problem for individuals with high functioning autism (CHAHBOUN et al., 2016).
One might therefore wonder whether challenges in identifying communicative intentions
contribute to the lower self-assessment of neurodiverse software developers on requesting
code reviews and reviewing other people’s code (MORRIS; BEGEL; WIEDERMANN, 2015).
Examples are those with autism spectrum disorder (ASD), attention deficit hyperactivity
disorder (ADHD), and/or other learning disabilities, such as dyslexia (MORRIS; BEGEL;

WIEDERMANN, 2015).
We envision the emergence of tools to support developers during code review based

on the automatic analysis of the communicative goals conveyed by developers’ comments.
To this aim, we present the first study of the communicative intentions expressed in
code review questions. We focus on questions as they have been recently described as
triggers of useful conversation excerpts in code review, i.e., in design discussions (VIVIANI

et al., 2018a; VIVIANI et al., 2018b) or in knowledge-sharing (BACCHELLI; BIRD, 2013).
Furthermore, our findings that questions presented the lowest agreement on confusion
during the manual annotation among the raters (cf. Section 3.3), and that the intentions
of questions are one of the main reasons for the classification models to predict wrongly
no confusion comments (cf. Section 3.5.2.1) intrigued us to better understand developers’
questions in code reviews.

We performed an exploratory study (RUNESON; HÖST, 2009) on the questions asked
by developers in the inline comments of Android code reviews. We manually classi-
fied 499 questions derived from 399 code reviews in Gerrit. Our findings suggest that
questions in code review serve diverse communicative goals, e.g., requesting clarifications,
discussing hypothetical scenarios, and suggesting improvements. We observed that the
majority of questions serve information seeking goals. Still, they represent less than half
of the annotated sample, providing evidence that questions may convey a wider variety
of developers’ communicative intention. A large category is represented by the questions
aimed at eliciting an action of the collaborators, i.e., developers usually employ politeness
when making suggestions by using questions instead of affirmative sentences.

Code change authors interviewed by Bosu et al. (BOSU; GREILER; BIRD, 2015) con-
sider clarification questions as “not useful”, as they do not immediately contribute to
code improvement. However, such questions have been reported as useful to improve the
reviewer’s understanding of the change under review, which in turn can lead to improve-
ment suggestions being formulated later on. Furthermore, as already observed by Bosuet
al. (BOSU; GREILER; BIRD, 2015), those clarification questions can be useful to trigger
knowledge transfer discussion between the contributors of a software project. This was
mentioned as a reason for conducting code reviews, beyond finding defects, by all but one
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of the interviewees in the study of Bacchelli and Bird (BACCHELLI; BIRD, 2013). They
reported that developers interact during code reviews to fulfil their understanding needs,
to speed-up and improve the review process. Our findings suggest that analysis of code
review comments should be able to distinguish, at least, between requests and clarification
questions.

Gachechiladze et al. argued that identification of anger can be used to design tools
and interventions supporting developers (GACHECHILADZE et al., 2017). Complementarily,
identification of communicative intention can provide a starting point in recommendations
for good practices. If, for example, polite requests for action, rather than direct sugges-
tions are more common among code reviews deemed to be useful (BOSU; GREILER; BIRD,
2015), then developers can be encouraged to embrace politeness (cf. discussion of how
to ask for help on StackOverflow (CALEFATO; LANUBILE; NOVIELLI, 2018b) and to
embrace envisioned guidelines on how to communicate efficiently in code reviews (EFS-

TATHIOU; SPINELLIS, 2018)). Identifying requests for clarification may also benefit in the
development of a recommending system, identifying lack of reviewer expertise and trig-
gering expert intervention (BOSU; GREILER; BIRD, 2015). Moreover, requests for rationale
or suggestions of alternative solutions are steps towards identifying design discussion in
code review (VIVIANI et al., 2018a).

Our findings, while preliminary, suggest research hypotheses worth investigating in
future work. Following the guidelines of Runeson and Höst (RUNESON; HÖST, 2009), we
formulate a set of hypotheses that should be confirmed or refuted by follow-up studies.

5.2 BACKGROUND ON COMMUNICATIVE INTENTION

People proceed in their conversations through a series of speech acts to yield a specific
communicative intention: they ask for information, agree with their interlocutor, state
facts and express opinions (ALBRIGHT et al., 2004). Speech acts constitute the basic unit
of verbal communication and are well studied in linguistics and computational linguis-
tics (AUSTIN, 1962; SEARLE, 1969; CORE; ALLEN, 1997; TRAUM, 2000). Traditionally,
speech acts have been analysed in the action view initiated by Austin (AUSTIN, 1962) in
which they are treated as a part of the theory of actions (HOLTGRAVES, 2002). Such as
actions influence the state of affairs in the physical world, speech acts affect the cogni-
tive state of participants on a dialogue. To some researchers, speech acts represent the
minimal and primitive unit of linguistic communication (SEARLE, 1969); others refer to
dialogue acts as more complex events involving interaction between the mental states of
the participants on a dialogue (COHEN; LEVESQUE, 1990). However, there is a general
consensus in the research community on modeling the whole linguistic communication
as a complex phenomenon involving communicative intentions (on the speaker side) and
their recognition (on the hearer side) (ALBRIGHT et al., 2004).
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In the linguistic community, there is a general consensus on identifying the speech
act associated to an utterance with the communicative intention of the speaker, e.g.,
ask a question, criticise, impress, comfort or self-disclose through objective statements or
opinions. Nevertheless, there is no simple way to relate a specific conversational statement
and the speech act it represents (FUSSELL; KREUZ, 1998; KRAUSS et al., 1981). For instance,
the attempt to establish communication might be expressed by the question “How are you
today?”. However, the very same intention (speech act) might have been expressed using
different words. Moreover, the very same words could suggest a different communicative
intention, depending on pragmatics and contextual information: e.g., when a doctor asks a
patient the very same question, it is more likely that they are inquiring into their patient’s
health rather than merely greeting them.

Hence, for the communication to be effective, all persons involved in the conversa-
tion must agree on the intention of the message (ŽEGARAC; CLARK, 1999). Indeed, overt
communication can be seen as an error-prevention strategy (CROOK, 2004) and misin-
terpretations can arise from misunderstanding of the communicative intention (HAUGH,
2012). When such misunderstandings are perceived as soon as they occur, conversational
repair can be employed as an error recovery strategy (GELUYKENS, 1994). In this study,
we focus on the communicative intentions conveyed by developers during code review.
Specifically, we analyse their communicative goals: the illocutionary force (AUSTIN, 1962)
(i.e., the speaker’s intention) of the questions asked during code review.

5.3 METHODOLOGY

We study the communicative intentions conveyed by comments contributed by developers
during code review. Specifically, we focus on questions as they can be used to convey a
multitude of communicative intentions, such as requests for clarification, discussions of
hypothetical scenarios and suggestions for improvements.

Developers’ questions have been investigated in previous software engineering research,
with specific focus on technical Q&A sites (TREUDE; BARZILAY; STOREY, 2011; BAJAJ;

PATTABIRAMAN; MESBAH, 2014; CALEFATO; LANUBILE; NOVIELLI, 2018b). However, a
priori it is not clear how frequent are the questions in code reviews. Indeed, if questions
are infrequent in code reviews, further classification of communicative intentions expressed
in questions might be irrelevant. Hence, we first ask:

RQ1. How frequent are questions in code reviews?
Next, we take a closer look at the communicative intentions expressed by these questions:

RQ2. What are the communicative intentions expressed in the developers’ questions
in code reviews?
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5.3.1 Case Study Subject: Android

To answer our research questions, we conduct an exploratory case study (RUNESON; HÖST,
2009). Indeed, RQ2 is exploratory in nature and we aim at formulating hypotheses that
can be confirmed or refuted by follow-up studies (EASTERBROOK et al., 2008).

As a starting point, to answer the RQ1, we leverage the our full datasets from Chap-
ter 3 of general and inline comments from the entire Android ecosystem. The total
number of questions found in the general and inline comments are 12,686 and 37,712, re-
spectively. For RQ2, we extracted the annotation sample only from the inline comments.
We decided to consider only inline comments because, as explained earlier, we believe
they tend to be more similar to dialogues than the general ones. We considered only the
questions group of our Android dataset to answer RQ2. Our annotation sample con-
tains 499 questions extracted from randomly selected 399 inline comments (corresponding
to the confidence interval of less than 5% and confidence level of 95% from a population
of 33,711 questions).

5.3.2 Identifying Questions

To answer RQ1 and lay foundations to answering RQ2, one should be able to distinguish
between questions and non-questions. A naive approach would be to identify questions
based on the presence of question marks “?”. However, not all questions would contain
the question mark and not all question marks introduce a question. Indeed, on the one
hand, questions might be implicit, e.g., “Would you point me to a an example of one
of these test stanzas you’re talking about.” and “can we bring quick_ into the naming
here.” Moreover, the writing style of code review comments tends to be quite informal
and developers might omit the question mark when asking a question (cf. discussion of
punctuation omission in instant messaging (ZHOU; ZHANG, 2005)). On the other hand,
question marks in the comments do not necessarily indicate questions as they might be
part of source code fragments or URLs. As an alternative to the naive approach, we use
the StanfordNLP API (MANNING et al., 2014) to parse the comments.

For example, the following questions:

• “Don’t we need to increment ‘i’ in the else case here to avoid an infinite loop?”

and

• “are you sure you want to include this source file directly? Why not create a static
library?”2

both express suggestion, even though the first is in the inverted yes/no question and the
latter is a wh-question.
2 From now on, in comments containing multiple sentences we highlight the question we are referring

to by underlining it.
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Figure 16 – Methodology adopted in the manual labeling.

5.3.3 Manual Labeling

To answer RQ2, we performed a manual annotation study on questions extracted from
code review comments (see Fig. 16). For this manual annotation, four raters, holding at
least a master’s degree in Computer Science, classified the questions in the first step. For
the second step, only three raters (from those four) participated in the annotation process.

The first step aimed at defining the coding schema using an open coding methodology,
i.e., without predefined categories (STRAUSS; CORBIN, 1990; ZIMMERMANN, 2016). Dur-
ing this step, the four raters individually annotated the 49 questions extracted from 25
randomly sampled comments. The annotation was performed at the sentence level, i.e.,
the individual questions rather than comment as a whole are used as unit of analysis.
However, the whole comment was presented to provide context for the annotation. The
raters were requested to assign a single label to each question indicating the communica-
tive intention it conveyed. After the annotators completed their assignments, the results
of the individual labeling were discussed to solve cases of disagreement. Based on the first
annotation step, we designed an initial taxonomy including 11 question categories that
were used as guidelines for annotation during the second step.

In the second step, the three raters were requested to individually label the commu-
nicative intention of 442 questions. They were instructed to perform the labeling based
on the 11 categories in the initial taxonomy. However, they could suggest any missing
categories they found relevant. Once the individual annotation was completed, we com-
pared the labels from each rater and compiled them into one final set. As a result, one
new category was added to the initial ones, i.e., criticism, leading to the final list of 12
categories. Once again, the single question (sentence) was considered as a unit of analy-
sis. Notwithstanding, the whole comment was provided as context to the rater. We used
Fleiss’ kappa (FLEISS, 1971) to measure the agreement, and majority voting to resolve
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the disagreements. When majority vote was not possible, i.e., when all the votes were dif-
ferent, the disagreement was resolved through discussion: the raters have jointly reviewed
the cases and decided upon the most appropriate label.

During the manual annotation of the 442 questions, the raters found 57 additional
questions not identified by the StanfordNLP API. These questions were included in
our analysis of communicative intentions, thus resulting in 499 questions overall in our
manually annotated dataset. However, the annotation of those 57 questions did not in-
clude any new question category. During the joint discussion, the raters unanimously
identified and discarded 2 declarative sentences that were erroneously classified by the
StanfordNLP API as questions. Furthermore, 1% (5) of the questions were discarded
given the inability of the raters to reach an agreement on the label to assign to them. For
instance, questions as “Is this line to be removed?” and “Do we need two timings here?”,
can be plausibly interpreted both as suggestions, i.e., “Remove this line” and “Use only
one timing”, and as requests to the code change author to confirm the reviewer’s un-
derstanding of the author’s intention. Such cases were discarded given the inability of
the raters to reach an agreement on the label to assign to them. In the end, our sam-
ple included 492 questions. The dataset of questions with corresponding communicative
intention labels is publicly available for research purposes (EBERT, 2019).

5.4 RESULTS

In this section, we organise the results according to each research question.

5.4.1 RQ1: How frequent are questions in code reviews?

The number of questions is three times higher in inline comments than in the general
ones. Table 12 shows that inline comments contains 75% (37,712) of the questions, while
general comments represent only 25% (12,686). We show the number of general and inline
comments with at least one question in Table 13. We can observe that 1.65% of the general
and 14.5% of the inline comments contain at least one question. These results suggest that
developers ask more questions in the inline comments.

Table 12 – Distribution of questions.

Comment Number of Questions
General 12,686 (25%)
Inline 37,712 (75%)
Total 50,398 (100%)
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Table 13 – Distribution of comments with questions.

Comment With Questions Without Questions Total
General 10,965 (1.65%) 649,880 (98%) 660,845
Inline 33,711 (14.50%) 198,760 (85%) 232,471

Questins 
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Figure 17 – Questions intention classification tree.

5.4.2 RQ2: What are the communicative intentions expressed in the developers’
questions in code reviews?

The manual labeling agreement between the three raters measured with Fleiss’ kappa
is 0.40, indicating a moderate agreement (LANDIS; KOCH, 1977). Figure 17 presents the
questions’ category classification tree. In the following, we discuss in details the classi-
fication of questions intentions. We group and discuss the intentions according to their
communicative intention as follows: i) suggestions and requests for actions are discussed
in Section 5.4.2.1, ii) all kinds of information seeking questions are introduced in Sec-
tion 5.4.2.2 (requests for confirmation, information, rationale, clarification and opinion),
iii) the questions expressing the speaker’s cognitive and affective states, i.e., attitudes
such as criticism or emotions, such as anger and surprise, are discussed in Section 5.4.2.3,
and iv) hypothetical scenarios and v) rhetorical questions are discussed in Section 5.4.2.4
and 5.4.2.5, respectively.
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5.4.2.1 Soliciting the interlocutor’s action

A considerable amount of questions is used to give a suggestion or to request an action,
i.e., to elicit an action of the interlocutor, albeit with a different degree of strength, from
suggestions to direct requests for action (see the examples reported below). Looking at
Figure 17, we observe that triggering the interlocutors/‘peers’ action is the actual speaker’s
goal in 40% of questions, based on the sum of suggestions (163) and request for action
(32).

Suggestions. More than 33% (163) of the questions actually convey the intention of
suggesting something, i.e., an alternative solution or a different implementation choice.
The developers usually try to be polite when making suggestions to their peers by using
questions instead of direct affirmative sentences (DANESCU-NICULESCU-MIZIL et al., 2013):

• “are you sure you want to include this source file directly? Why not create a static
library?”;

• “Maybe introduce an additional line between ‘abc’ and ‘def’?”;

• “Do we need the conditional? How about assigning is_success directly?”.

In some cases, suggestions consists of merely one word, suggesting an action or de-
scribing the desired source code modification:

• “const?”;

• “Remove?”;

• “Multicatch?”.

Request for action. In 7% (32) of cases, reviewers rather make a direct request for
action, i.e., they directly ask the change authors to perform a specific action. The intention
is to induce the interlocutor to perform a specific action. As opposed to suggestions,
requests for action explicitly refer to the individual that is expected to take action:

• “keeping with the other functions in this file, can you put each argument on its own
line?”;

• “Can you make these different? For example, can this one be 2001:db8:1::13?”;

• “Can you move this inside _nvmap _page _pool _fill _lots _locked()?”.
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5.4.2.2 Information seeking

The majority of questions (49%) serve information seeking goals. This communicative
intention is expected because it is intrinsic to the code review process. Looking at Fig-
ure 17, we observe that all requests together sum up to 240, if we exclude requests for
action, whose purpose is the same communication goal of suggestions. Conversely, all
other request categories serve the speaker’s goal to elicit information sharing action from
the interlocutor. Specifically, developers try to fulfill different information needs while
reviewing code changes, i.e., they ask questions to clarify their understanding of the code
change. To accomplish that, they usually need to request some kind of information.

Request for confirmation. More than 18% (92) of questions are request for con-
firmation, i.e., the reviewer has a certain degree of understanding but expresses doubt
and seeks approval from the code change author. Usually they have the format of yes/no
questions:

• “shouldn’t this just be a failure? [...]”;

• “This size_ includes the size of the header, correct? [...]”;

• “Is request cloning still necessary?”.

Request for information. In 11% (58) of cases, reviewers perform requests for
information, i.e., reviewers have partial understanding of the problem and ask a question
aimed at obtaining missing technical details required to complement the understanding:

• “When can this be null? [...]”;

• “Where are these entries populated?”;

• “what’s the exact format? [...]”.

Request for rationale. In 9% (45) of cases, the developer performs a request for
rationale to understand the reason behind an implementation choice:

• “Why is this included? [...]”;

• “why are you releasing peristent mem buffers here?”;

• “Why do you add 2 attribute list end marker?”.

Requests for clarification. About 4% (24) of the questions represent developers
trying to clarify something from the code change. We exclude the requests to clarify the
rationale behind the change as requests for rationale are relatively common and constitute
their own category.
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• “What’s happening here?”;

• “Can you clarify what you mean?”;

• “How is this different from the one above?”.

Request for opinion. Developers also make comments in the code review asking for
others’ opinions when they do not know how to proceed with something. We found that
4% (21) of the questions have such intention:

• “Is there a cleaner way of expressing this? This works, but doesn’t feel right.”;

• “[...] What do you think? Thanks”;

• “Which name do you suggest?”.

5.4.2.3 Expressing attitudes and emotions

In 8% of questions, the actual developers’ communicative intention is to express their
attitudes, opinions or emotions. Developers express their attitude of doubt through criti-
cisms, and even share such attitude of perplexity or disagreement by communicating their
emotions with different degrees of strength, from surprise to anger. In all these cases, the
final goal of the speaker is to express their own cognitive and emotional state to induce
critical reflection in the interlocutor about the topic being discussed.

Criticism. About 5% (25) of the questions contain some level of negativity, but could
not be classified as expressing anger; they rather express criticism towards an implemen-
tation choice made by the interlocutor:

• “And burning a register? :-)”;

• “Do you really want to return the address of a local variable here?”;

• “why do blank lines show up as code changes? Pls avoid this.”.

Anger and Surprise. We also observe few cases where developers expressed their
emotions through questions. They represent 2% (13) of our question dataset, of which
1.22% (6) were classified as anger and 1.42% (7) as surprise.

For anger, there is one case where the direction of the anger is the speaker itself:

• “free does not affect errno, what was I thinking?”.

The other questions have the anger targeted interlocutors or objects/situations:

• “wtf? you _really_ want reflection here.”;

• “What’s all this?”;
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• “Agree. What the heck is this. Max jitter? If so, please use jitter”.

Finally, in some cases developers express their surprise with a question:

• “is this true? that seems mildly surprising. did you run the tests against glibc too?”;

• “Is this true? Shouldn’t it be /dev/pmsgX and /sys/fs/pstore/pmsg-ramoops-X in-
stead?”.

In the other case the developer is surprised by the compiler:

• “remove? (i’m surprised clang doesn’t complain about this?)”.

5.4.2.4 Hypothetical scenarios

Questions describing hypothetical scenarios (2%) may serve different communication pur-
poses related to what-if scenarios, from information seeking to expression of criticism or
doubt. Since context is needed to disambiguate the speakers’ intention, we decided not to
map a priori the hypothetical scenarios to categories discussed above. Developers tend to
use wh-questions in combination with conditional conjunctions to describe hypothetical
scenarios:

• “What about if an already Jack server is running?”;

• “what happens if r1 is sample and r2 is not?”;

• “what if you see a sequence like c2 20 split across two calls?”.

5.4.2.5 Rhetorical questions

These are usually used when developers raise a question to answer it later themselves. Such
questions serve the communicative goal of providing evidence and argument to support
the claim made right after the question. They constitute only 1.22% (6) of the questions,
some examples are:

• “Isn’t the case that you illustrated (0.9ms being decremented as 0) applicable in both
solutions? Yes, the solution you offered ensures that the loop doesn’t spend time on
the extra instruction sets [...]”;

• “[...] i asked rhetorically in the checkin comment then “what is this for?””;

• “[...] However, we have library that depends on this one that seems to compile either
way. What gives? I would have expected some paths to be wrong.”.
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5.5 DISCUSSIONS

We observed that developers ask more questions in the inline comments than in the general
ones. This observation concurs with our expectations that the inline comments tend to
be more similar to a dialog than the general comments.

In line with findings from previous research suggesting that code review also serves
knowledge-transfer purposes (BACCHELLI; BIRD, 2013), we observed that the majority of
questions are information seeking requests, including requests for confirmation, informa-
tion, rationale, clarification, and opinion. This suggests a rich variety of information needs
experienced by developers during code review. While representing the majority of ques-
tions, information seeking requests are actually less than half of the annotated sentences
in our dataset (49%). In particular, the second most frequent goal addressed by devel-
opers’ questions is to elicit a reaction of the interlocutor (40%). This evidence suggests
that we should not consider questions as purely information seeking activity. Conversely,
developers use sentences in form of questions to serve a wider variety of communication
goals.

The second most frequent goal addressed by developers’ questions is to elicit a reaction
of the interlocutor (40%), i.e., by either making a polite suggestion (33%) or directly
performing a request for action using an imperative sentence to give a direct command
(7%). The use of indirect language to perform a suggestion might be seen as an indication
of politeness, as indirect language is considered as a clear rhetorical tool for conveying a
kind attitude towards the interlocutors (DANESCU-NICULESCU-MIZIL et al., 2013).

Finally, developers use questions to express doubt or disagreement with different de-
grees of intensity, e.g., with surprise, criticism expressions, and anger. This evidence in-
dicates that developers also express their attitude of doubt and perplexity, and tend to
disagree with the implementation choices of their peers with different degrees of inten-
sity. Such intensity ranges from: i) surprise (1.42%) about unexpected code behavior,
generally accompanied by a neutral attitude (e.g., “I am surprised clang doesn’t com-
plain about this”), ii) criticism expressions (5%) to convey both perplexity and either a
slightly negative attitude towards the interlocutors’ or a slightly negative evaluation of
their implementation choice (e.g., “Do you really want to return the address of a local
variable here?”), and iii) actual anger (1.22%) to communicate both strong disagreement
and negative attitude towards the interlocutor (e.g., “wtf? you _really_ want reflection
here”). In all those cases, the actual goal of questions belonging to these categories is to
express the speakers’ own cognitive and emotional state to induce a critical reflection in
the interlocutor.

One may argue that the percentage of questions conveying anger is quite limited to
justify relevance of follow-up studies. However, it is comparable to that reported in pre-
vious research on emotions in developers’ comments in issue tracking systems (MURGIA

et al., 2014). Specifically, we found that anger is expressed in form of questions to convey
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frustration for own errors, hostile attitude towards the interlocutor or strong dislike to-
wards a code change. This is consistent with categorisation of anger towards self, others,
and object described by previous research on negative emotion in issue tracking com-
ments (GACHECHILADZE et al., 2017). This confirms previous evidence that developers
express emotions during daily programming tasks (MURGIA et al., 2014).

Overall, our findings suggest that questions in code reviews do not seek exclusively to
obtain information, i.e., developers use questions to serve a wide variety of communica-
tion goals. In the following, we attempt to suggest avenues for possible implications for
practitioners as well as further research.

5.5.1 Implications for Practitioners

In line with the recommendations for good practices provided by Efstathiou and Spinel-
lis (EFSTATHIOU; SPINELLIS, 2018), we advocate that tools should support the automatic
analysis of fine-grained communicative intentions in code review comments. For example,
understanding the information needs of reviewers and the way authors and reviewers in-
teract during code review can provide empirically-driven guidelines for change authors to
anticipate the reviewers information needs, thus making the code review process faster
and more effective. We believe that, as a consequence of understanding the communica-
tive intention of the questions in code reviews, developers will have a better idea as to
what other developers really want to say. Such practices can be complemented by the use
of automatic tools providing feedback for improvement during code review. For example,
we envision tools for augmented writing of comments to support neurodiverse developers
to achieve an efficient and explicit communication during code review.

Furthermore, fine-grained analysis of the argumentation structure of code review dis-
cussions can be leveraged to identify long-lasting value knowledge to be shared among the
contributors of a project. For example, the correct identification of requests for rationale
may help identify design-related discussion, as proposed by Viviani et al. (VIVIANI et al.,
2018a).

This study also provides further evidence of expressions of negative emotions in col-
laborative development (GACHECHILADZE et al., 2017; FORD; PARNIN, 2015). Early detec-
tion of negative emotions might benefit community management and reduce undesired
turnover, i.e., by preventing burnout and loss of productivity (MÄNTYLÄ et al., 2016) or
timely addressing code of conduct violations and community smells (i.e., sub-optimal or-
ganisational and socio-technical patterns in the organisational structure of the software
community) (TOURANI; ADAMS; SEREBRENIK, 2017).

Finally, real-time identification of the communicative goal of questions in code review
could enhance the effectiveness of the code review process itself. Requests for clarification
or rationale could be detected in order to support programmers experiencing confusion,
e.g., by soliciting the author of the change to provide the required information (EBERT
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et al., 2017) or by triggering an expert intervention. Conversely, requests for action or
suggestions might be leveraged to notify the colleagues, i.e., by notifying them that a
change in the code is recommended.

5.5.2 Implication for Researchers

As befitting from the exploratory case study (RUNESON; HÖST, 2009), we propose three
hypotheses about the intention of developers’ questions in code reviews. Investigating
those hypotheses should be a subject of a follow-up study.

H1 (cf. Section 5.4.2.1). Questions from the inline comments are frequently used to
trigger an action of the interlocutor (rather than to satisfy information needs). Suggestions
and requests for action jointly form the second most frequent communication goal: elicit an
action of peers. We would like to investigate whether this same trend occurs in the general
comments. Furthermore, this evidence indicates the intention of adopting a polite style of
communication by making requests to perform code changes through indirect questions,
rather than direct imperative statements. It would be interesting to enhance the evidence
provided by related research about politeness and productivity in bug fixing (ORTU et al.,
2015) by investigating this relationship also in code review.

H2 (cf. Section 5.4.2.2). While the largest group of questions from the code reviews aim
at satisfying information needs, such as request for information, rationale, or clarification,
this group constitutes less than half of all questions. One could further investigate to
what extent the various types of requests are related to the presence of confusion in code
reviews (EBERT et al., 2017).

H3 (cf. Section 5.4.2.3). Developers use questions to express their own cognitive and
emotional state in order to induce critical reflection in the interlocutor. They express
criticism and emotions (e.g., anger or surprise), and convey doubt, perplexity and dis-
agreement with different degrees of strength.

The questions’ intentions classification can help researchers to understand how com-
munication happens in code reviews. Our findings indicate that interaction during code
reviews might serve several communication goals, beyond simply finding defects in the
code. Beyond the specific hypotheses, a replication of this study with a broader set of
questions, general comments and, possibly, with an automatic approach to speech act
analysis, will bring full understanding of the role played by questions in code reviews. We
believe that such understanding will shed new light on the informational needs of develop-
ers, the antecedents to confusion they might experience, and the way they communicate
with each other to make suggestions or requests.

Furthermore, questions expressing different communicative intentions might have dif-
ferent impact on software quality, development time or project evolution: e.g., hypothetical
scenarios might be successful in revealing hidden bugs. Yet another perspective would be
to combine the study of communicative intentions with social aspects of developers’ com-
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munities, e.g., who is asking questions with different communicative intentions and who is
being asked. One might also wonder whether the observation of Gachechilade et al. (that
anger in Jira issues is usually directed at objects rather than the speaker themselves or
the interlocutors (GACHECHILADZE et al., 2017)) is also valid for the code reviews. Finally,
we would like to verify the relation between directionality of emotions and the outcome
of code reviews (merge or abandon).

5.6 THREATS TO VALIDITY

In this section, we discuss the threats to validity following the guidelines of Runeson et
al. (RUNESON et al., 2012), with focus on construct, internal, and external validity.

Construct validity. The threats to construct validity concern the relation between
the theory and the observation. We used a state-of-the-art NLP tool, i.e., the Stan-
fordNLP API (MANNING et al., 2014), to extract questions included in our sample set.
During the manual annotation, we observed that two sentences were erroneously classified
as questions (0.4%) by the tool. Thus, we still consider its results precise enough for our
exploratory study we conduct.

Internal validity. The threats to internal validity concern external factors we did not
consider that could affect the variables and the relations being investigated. The manual
annotation is an error-prone activity whose output depends on the subjective evaluation of
the raters. To mitigate such threats, the raters were recruited based on their background
in computer science and expertise with labeling. We solved disagreements either through
majority voting or discussions, to address threats due to subjectivity in annotation.

External validity. The threats to external validity are related to the generalisability
of the study results. Due to the exploratory character of our study, we do not claim
generalisability of our observations, but use them to derive hypotheses (Section 5.5.2) to
be confirmed or refuted in a follow-up study.

5.7 RELATED WORK

In the following, we report the related work on the study of communicative intentions
of questions from different perspectives. We start discussing the intention of questions
from the general dialogues perspective (Section 5.7.1), and then from the point of view of
software developers (Section 5.7.2).

5.7.1 Analysis of Communicative Intentions in Dialogues

Speech acts are well studied in linguistics and computational linguistics research since
long (AUSTIN, 1962; SEARLE, 1969; KEARSLEY, 1976). In computational linguistics, the
task of automatic speech act recognition has been addressed with good results leverag-
ing both supervised (STOLCKE et al., 2000; VOSOUGHI; ROY, 2016b) and unsupervised
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approaches (NOVIELLI; STRAPPARAVA, 2011). This interest is justified by the large num-
ber of applications that could benefit from automatic speech act annotation of natural
language interactions. For instance, simulation of natural dialogues with embodied con-
versational agents (KLÜWER, 2011), conversational interfaces for smart devices (MCTEAR;

CALLEJAS; GRIOL, 2016) and the Internet of Things (KAR; HALDAR, 2016), detection of
rumors in microblogging (VOSOUGHI; ROY, 2016a), and identification of roles in group
chats in computer-mediated decision-making tasks (BARLOW, 2013).

Specifically, the communicative intentions conveyed by questions have been object of
dedicated studies. Stivers and Enfield (STIVERS; ENFIELD, 2010) defined a coding scheme
for questions and responses from ordinary conversations. Their intention was to publish
the step-by-step methodology for coding questions and responses.

Ilie (ILIE, 1999) proposed a pragmatic framework for the interpretation of commu-
nicative intentions in questions occurring in talk shows. The study showed how mixed
types of questions are often combined to fulfill several communication goals simultane-
ously. In particular, the author studied three types of argumentative questions, namely
expository questions, rhetorical questions, and echo questions, and how they are used to
elicit reactions from the interlocutor or from the audience. The three categories of ques-
tions have been analysed and categorised based on how they serve specific communicative
goals in different argumentation framework, i.e., to elicit an argument from the interlocu-
tor (argument-eliciting questions), to preface the speaker’s own argument to the audience
(argument-prefacing questions), and to provide argument in the form of rhetorical ques-
tions (argument-supplying questions).

Chen et al. (CHEN; ZHANG; MARK, 2012) proposed a semi-supervised approach for
classification of the user intent in community-based Question Answering (Q&A). They
built a predictive model through machine learning based on both text and meta-data
features for classification of requests on Yahoo! Answers3. Questions are classified into
three categories accordingly to the user intent, namely subjective, objective, and social,
consistently with their long-term goal of enhancing information retrieval in Q&A sites.

5.7.2 Analysis of Developers’ Questions

Thanks to the popularity of StackOverflow, which has made available an enormous
amount of natural language interactions, researchers in software engineering also started to
investigate how developers formulate their requests in information seeking tasks. Treude et
al. (TREUDE; BARZILAY; STOREY, 2011) analysed which kinds of questions are asked on
StackOverflow. By conducting a qualitative coding of questions asked by develop-
ers on StackOverflow, they categorised the questions, such as how-to, discrepancy,
environment, error, and review (i.e., questions that ask for a code review). The authors
also verified which questions are answered well and which ones remain unanswered. Their
3 http://answer.yahoo.com
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preliminary findings indicate that StackOverflow is particularly successful in replying
to how-to questions posed by new community members.

Bajaj et al. (BAJAJ; PATTABIRAMAN; MESBAH, 2014) also investigated the questions
and answers from StackOverflow to understand the challenges and misconceptions
among web developers. They used Latent Dirichlet Allocation (LDA) (BLEI; NG;

JORDAN, 2003) to categorise the discussions from developers. As of the main results,
they found that Cross Browser discussions are the most popular among web developers,
followed by DOM and Canvas related discussions.

Calefato et al. (CALEFATO; LANUBILE; NOVIELLI, 2018b) investigated how information
seekers can increase the chance of eliciting a successful answer to their requests for tech-
nical help on StackOverflow. Specifically, they investigate the impact of actionable
factors, namely affect, presentation quality, and time, on the success of questions. Based
on their findings, they provided evidence-based guidelines that information seekers can
follow to increase the chance of getting help, e.g., add example code snippets to enhance
clarity, be concise, avoid unnecessary use of uppercase characters, and adopt a neutral
writing style.

While relevant for the software development domain, the above mentioned studies
focused either on the topics or on the writing style of the questions from Q&A websites,
where the intention of questions is assumed to be the same for all StackOverflow
posts, i.e., asking for technical help (TREUDE; BARZILAY; STOREY, 2011).

Other studies aimed at categorising the type of information need expressed by develop-
ers’ questions. It is the case of Fritz and Murphy (FRITZ; MURPHY, 2010) who conducted
interviews with eleven developers and identified 78 questions they ask in their daily jobs.
They classified the information needs expressed by developers into several categories, such
as code change specific, people specific, and work-item progress. Furthermore, the chan-
nels where such information could be found include the source code, change sets, teams,
work items, and informal comments.

Sillito et al. (SILLITO; MURPHY; VOLDER, 2006) conducted a study with developers
performing code changes to understand what information they need to know about a code
base and how they find it. They identified 44 different questions developers ask. Those
questions are categorised into four groups based on the characteristics of the source code
graph capturing the information needed for answering a given question: those aimed
at finding initial focus points, those aimed at building on such points, those aimed at
understanding a subgraph, and those over such subgraphs.

5.8 SUMMARY

In this chapter, we presented the study still related to the problem of lack of knowledge
in code reviews, but with a slight different point of view: from the intention of developers
questions. We believe this is an important topic which is strong related to confusion, the
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analysis of this relation is part of our future work. We conducted a case study to investi-
gate the communicative intention of developers’ questions during the code review process.
We observed that questions are more present in the inline comments than general ones.
We also manually labelled 499 questions from 399 Android code review comments. We
found that, while representing the majority of requests, information seeking questions are
still less than half of all questions in our sample. This evidence suggests that questions
are actually used by developers in code review to serve a wider variety of communica-
tive purposes. Specifically, we found that questions are extensively used by developers to
convey suggestions. Developers also express their cognitive and affective states in code
review comments, such as attitude of doubts and criticisms or emotions like anger and
surprise. Based on this case study, we formulate three hypotheses about the intention of
developers’ questions in the code review process.
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6 CONCLUSIONS

In this chapter, we review the problem stated, the solution proposed and the main con-
tributions of this thesis. We also discuss how we plan to extend this study in the future
work.

6.1 THE PROBLEM

This thesis tackles two important and timely problems:

1. The lack of knowledge about confusion faced by developers in code reviews;

2. The lack of tools for confusion identification in code review comments.

We conducted three different studies aiming the problem of lack of knowledge. We
believe we provided a in-depth understanding of this problem, i.e., how confusion is related
to code reviews. As for the problem of lack of tools, we believe we provided the first step
towards its solution. Three classifiers with a reasonable performance are available for
practitioners and researchers to use it to identify confusion in code reviews comments.

6.2 REVIEW OF MAIN CONTRIBUTIONS

This thesis offers the following contributions:

1. A confusion coding scheme, together with an automated approach for detecting
confusion in code review comments;

2. A gold standard set with 1,542 general and 1,190 inline code review comments
labelled as confusion and no confusion;

3. A model of confusion in context, with the reasons and impacts of confusion in code
reviews, as well as the strategies developers adopt to cope with confusion;

4. A gold standard set of our confusion in context model, comprising the reasons,
impacts, and coping strategies related to confusion in code reviews;

5. A series of practical and actionable suggestions to improve code review tools based
on our confusion in context model;

6. A classification of the communicative intentions expressed in the developers’ ques-
tions in code reviews;

7. A gold standard set of 499 questions from code reviews with corresponding commu-
nicative intentions.
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6.3 FUTURE WORK

We intend to extend this study with the following future work.
As for the confusion detection study (cf. Chapter 3):

• Firstly, we want to analyse the inline comments of the remaining group;

• We think of experimenting other scenarios within our models, e.g., assessing the
impact of the handling of negation and the undersampling (DRUMMOND; HOLTE,
2003) of the majority class (i.e., sampling a smaller set of the no confusion class);

• We consider experimenting different NLP libraries, other than StanfordNLP, to
the identification of questions since we observed a small number of questions not
detected by it;

• The error analysis of the balanced models is another step we plan to conduct in
order to understand the reason of the misclassification within those models;

• Finally, we plan to replicate this study with other projects to assess the evaluation
of our models of confusion identification, as well as to increase our gold standard
sets of confusion comments.

As regarding the confusion in context study (cf. Chapter 4):

• Firstly, we want to investigate how and when confusion affects the relations be-
tween code review metrics (e.g., review time, number of comments, code change
size, number of reviewers, etc.) and the code review outcome (e.g., accepted or re-
jected). The former is established by the mediation analysis, while the latter is with
the moderation analysis (HAYES, 2013);

• We intend to automate detection of different confusion dimensions (e.g., from the
review process, artifact, and developers) in code review comments by using machine
learning techniques;

• We plan to study possible relations between confusion and information needs (PAS-

CARELLA et al., 2018), as well as between confusion and migration of code review
discussions to off-line channels;

• In our model, several reasons for confusion do not have a coping strategy related.
Thus, we aim at investigating how those reasons could be addressed in order to
support developers in code reviews;

• We will provide a series of guidelines on how to avoid and deal with confusion during
code reviews based on our confusion in context model;
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• Lastly, we consider verifying whether the perceived impact of confusion can be
observed in the code review artifacts.

As for the communicative intentions of questions study (cf. Chapter 5):

• We consider confirming/rejecting the hypotheses first in the general comments of
Android, and next on other OSS projects which conduct code reviews;

• We plan to study the communicative intention of the code review comment as a
whole, as the combination of different sentence intentions in the same comment
might have another intention;

• We intend to survey developers to validate our findings about their communicative
intentions in code reviews;

• Finally, we plan to investigate the relations between the questions’ intentions and
confusion in code review comments.
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APPENDIX A – LIST OF FEATURES FROM THE CONFUSION CODING
SCHEME

Below we list all features from each category of our confusion coding scheme.

A.0.1 Hedges

could in a sense technically approximated
may in a way they as much as approximately
maybe in an important sense they call themselves a approximates
might in essence they call themselves an approximating
might feel a bit in name only typical approximation
perhaps in one sense typically approximations
seems kind of very argue
seems like largely virtually argued
sort of literally about argues
a real loosely speaking allegation arguing
a regular more or less allegations argument
a self-styled mostly allege arguments
a true mutatis mutandis alleged around
a veritable nominally alleges assert
actually often alleging asserted
all but a par excellence allude asserting
all but technically particularly alluded assertion
almost practically alludes assertions
anything but a pretty alluding asserts
as it were pretty much alternative assess
basically principally alternatives assessed
can be tooked upon as pseudo anticipate assesses
can be viewed as pseudo- anticipated assessing
crypto quintessential anticipates assessment
crypto- quintessentially anticipating assessments
details aside rather appear assume
especially really appearance assumed
essentially relatively appearances assumes
exceptionally roughly appeared assuming
for the most part she as much as appearing assumption
he as much as she calls herself a appears assumptions
he calls himself a she calls herself an appreciable avenue
he calls himself an so to say approach avenues
in a manner of speaking somewhat approaches belief
in a real sense strictly speaking approximate beliefs
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believe contending feared illusion
believed contends fearing illusions
believes contention fears imagine
believing contentions feel imagined
can deduction feeling imagines
candidate deductions feels imagining
candidates deem felt immense
central deemed find implicate
chance deeming finding implicated
chances deems finds implicates
charge devastating forecast implicating
charged doubt forecasting implication
charges doubted forecasts implications
charging doubting foresaw implied
claim doubts foresee implies
claimed dramatically foreseeing imply
claiming drastically foreseen implying
claims envision foresees impression
close envisioned foreshadow impressions
closely envisioning foreshadowed impressive
clue envisions foreshadowing inclination
clues estimate foreshadows inclinations
conceive estimated found indication
conceived estimates greatly indications
conceives estimating gross infer
conceiving estimation guess infered
concept estimations guesses inference
concepts evaluate held inferences
conceptualization evaluated highly infering
conceptualizations evaluates hint inferred
conceptualize evaluating hinted inferring
conceptualized evaluation hinting interpret
conceptualizes evaluations hints interpretation
conceptualizing expect hold interpretations
conclude expectancies holding interpreted
concluded expectancy holds interpreting
concludes expectation hope interprets
concluding expectations hoped judge
conclusion expected hopes judged
conclusions expecting hoping judges
consider expects hunch judging
considerable extrapolate hunches judgment
considerably extrapolated hypotheses judgments
considered extrapolates hypothesis just
considering extrapolating hypothesize large
considers fair hypothesized likelihood
construct fairly hypothesizes likelihoods
constructs fantasies hypothesizing little
contend fantasy idea look
contended fear ideas looked
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illusion looking points to proposed
illusions looks points toward proposes
imagine main portend proposing
imagined mainly portended proposition
imagines maintain portending propositions
imagining maintained portends prospect
immense maintaining posit prospects
implicate maintains posited proximate
implicated major positing quite
implicates marked posits reason
implicating markedly possibilities reasonable
implication massively possibility reasonably
implications moderate postulate reasoned
implied moderately postulated reasoning
implies modest postulates reasons
imply modestly postulating reassess
implying must potential reassessed
impression nearly potentials reassesses
impressions negligible predict reassessing
impressive notable predicted reestimate
inclination noticeable predicting reestimated
inclinations notion prediction reestimates
indication notions predictions reestimating
indications odds predicts regard
infer opinion predominantly regarded
infered opinions predominately regarding
inference opportunities premise regards
inferences opportunity premises relative
infering option presume remarkable
inferred options presumed rough
inferring partially presumes saw
interpret partly presuming scenario
interpretation perceive presumption scenarios
interpretations perceived presumptions scheme
interpreted perceives primarily schemes
interpreting perceiving primary see
interprets perception principal seeing
judge perceptions probabilities seem
judged perspective probability seemed
judges perspectives project seeming
judging philosophies projected seen
judgment philosophy projecting sees
judgments point of view projection shortly
just point to projections should
large point toward projects sign
likelihood pointed to promise significant
likelihoods pointed toward promises significantly
little pointing to proposal signs
look pointing toward proposals slight
looked points of view propose slightly
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small theory
some theses
sound thesis
sounded think
sounding thinking
sounds thinkings
speculate thinks
speculated thought
speculates thoughts
speculating threat
speculation threats
speculations tiny
strongly tremendous
substantial trend
substantially trends
suggest vastly
suggested view
suggesting viewed
suggestion viewing
suggestions viewpoint
suggests viewpoints
suppose views
supposed virtual
supposes vision
supposing visions
supposition widely
suppositions will
surmise wish
surmised wished
surmises wishes
surmising wishing
suspect wonder
suspected wondered
suspecting wondering
suspects wonders
suspicion worried
suspicions worries
tend worry
tended worrying
tendencies would
tendency
tending
tends
tenet
tenets
theories
theorize
theorized
theorizes
theorizing
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A.0.2 Probables

likely theoretically implausible frequent
sometimes unlikely improbable general
probably commonly indicative normal
frequently generally plausible occasional
could have normally possible pervasive
often occasionally potential popular
apparently oftentimes predictive prevalent
arguably rarely probabilistic rare
conceivably routinely probable regular
ostensibly seldom prone to scarce
perhaps typically putative typical
possibly usually speculative uncommon
potentially apparent suggestive not uncommon
presumably apt to theoretical usual
seemingly conceivable characteristic
supposedly doubtful common
tentatively hypothetical commonplace

A.0.3 Hypotheticals

I cannot imagine
What if
Imagine
I was wondering

A.0.4 I Statements

I wonder I believe
I struggle I reckon
I am not sure I suppose
I am curious I suspect
I bet I do not understand
I would guess not I could not understand
I am confused I do not know
I guess I do not get it
I doubt I am unsure
I think
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A.0.5 Nonverbals

hm
hmm
hmmm
hmmmm
mm
mmm
oh
ooh

A.0.6 Meta

It appears I did not know
It seems I did not get it
argues that It turns out
claims that wtf
contends that what the fuck
maintains that what the heck
There is a probability what the hell
There is a likelihood It is not clear
There is a possibility It was not clear
There is a chance confusing
I did not understand weird
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