

Pós-Graduação em Ciência da Computação

“An Exploratory Study on Exception Handling
Bugs in Java Programs”

By

Felipe Ebert

M.Sc. Dissertation

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE, AUGUST/2013

 FEDERAL UNIVERSITY OF PERNAMBUCO

INFORMATICS CENTER

GRADUATE IN COMPUTER SCIENCE

FELIPE EBERT

“An Exploratory Study on Exception Handling Bugs in Java
Programs"

A M.SC. DISSERTATION PRESENTED TO THE INFORMATICS
CENTER OF FEDERAL UNIVERSITY OF PERNAMBUCO IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE IN COMPUTER SCIENCE.

 Advisor: Fernando Castor

RECIFE, AUGUST/2013

 Catalogação na fonte

Bibliotecária Jane Souto Maior, CRB4-571

Ebert, Felipe
 An exploratory study on exception handling bugs in Java
programs / Felipe Ebert. - Recife: O Autor, 2013.
 xi, 86 f.: il., fig., tab.

 Orientador: Fernando Castor.

 Dissertação (mestrado) - Universidade Federal de Pernambuco.
CIn, Ciência da Computação, 2013.

 Inclui referências e apêndice.

 1. Engenharia de software. 2. Bugs. I. Castor, Fernando
(orientador). II. Título.

 005.1 CDD (23. ed.) MEI2013 – 125

Dissertação de Mestrado apresentada por Felipe Ebert à Pós-Graduação em Ciência da
Computação do Centro de Informática da Universidade Federal de Pernambuco, sob o
título “An Exploratory Study on Exception Handling Bugs” orientada pelo Prof.
Fernando José Castor de Lima Filho e aprovada pela Banca Examinadora formada pelos
professores:

 __
 Prof. Marcelo Bezerra D’Amorim
 Centro de Informática / UFPE

 __
 Profa. Roberta Coelho de Souza
 Deptº de Informática e Matemática Aplicada/ UFRN

 Prof. Fernando Jose Castor de Lima Filho
 Centro de Informática / UFPE

Visto e permitida a impressão.
Recife, 2 de agosto de 2013

Profa. Edna Natividade da Silva Barros
Coordenadora da Pós-Graduação em Ciência da Computação do
Centro de Informática da Universidade Federal de Pernambuco.

Acknowledgements

Agradeço primeiramente a Deus. Aos meus pais que sempre me apoiaram, educaram
e me ensinaram os valores da vida. Ao meu irmão por sempre me dar conselhos nos
momentos difíceis.

À Camila que sempre me apoiou durante todo este período e me incentivou para que
eu terminasse o Mestrado.

Ao meu orientador, o professor Fernando Castor, pela sua paciência, ajuda e exce-
lente orientação durante todo o Mestrado.

Agradeço também aos membros do SPG que forneceram enorme feedback no meu
projeto. Ele foi de grande importância para o amadurecimento desta pesquisa.

Agradeço também aos meus amigos do "Pior o Meu Padasto", sempre compartil-
hando momentos únicos.

Finalmente, agradeço ao CIn, a UFPE, a FACEPE e ao CNPq por financiarem esta
pesquisa.

iv

Resumo

Vários estudos afirmam que o código de tratamento de exceções em geral tem baixa qual-
idade e que é geralmente negligenciado por desenvolvedores. Além disso, acredita-se
que essa parte da implementação de um sistema é a menos compreendida, documentada
e testada. Apesar desse cenário, existem poucos estudos que analisam bugs de trata-
mento de exceções que ocorrem em sistemas de software reais e nenhum estudo que
tente entender a percepção dos desenvolvedores sobre esses bugs.

Neste trabalho, apresentamos um estudo exploratório sobre bugs de tratamento de
exceções baseado em duas abordagens complementares: uma pesquisa com 154 de-
senvolvedores e uma análise de 220 bugs dos repositórios do Eclipse e Tomcat. Os
desenvolvedores de nossa pesquisa acreditam que bugs de tratamento de exceções são
mais facilmente corrigidos do que outros tipos de bugs. Há também uma diferença sig-
nificativa na opinião dos desenvolvedores sobre a qualidade do código de tratamento de
exceções: os desenvolvedores mais experientes tendem a acreditar que é pior.

A análise dos repositórios do Eclipse e Tomcat revelou resultados conflitantes. O
tempo de correção dos bugs de tratamento de exceções do Eclipse é significativamente
menor do que o de outros tipos de bugs. Entretanto, os bugs de tratamento de exceções
têm um número significativamente maior de comentários do que os bugs que não são
de tratamento de exceções. Por outro lado, para o Tomcat, não conseguimos achar uma
diferença significativa para o tempo de correção dos bugs e os bugs de tratamento de
exceções tem um número significativamente menor de comentários do que os outros
tipos de bugs.

Além disso, descobrimos que os bugs decorrentes de blocos catch genéricos, um
defeito bem conhecido em programas que usam exceções, são raros, embora existam
várias oportunidades para que eles ocorram. Descobrimos também que blocos catch
vazios não são só prevalentes, como previamente relatado na literatura, mas também
geralmente usados como correções dos bugs, inclusive para bugs de tratamento de ex-
ceções. Também achamos poucos bugs reportados em que as causas deles são blocos
catch vazios, embora desenvolvedores frequentemente mencionem eles como causas
de bugs que já corrigiram no passado. E por fim, apresentamos uma proposta de classi-
ficação dos bugs de tratamento de exceções.

Palavras-chave: Tratamento de Exceções; Bugs; Questionário; Mineração de Repositórios.

vi

Abstract

Several studies argue that exception handling code is usually of poor quality and that it
is commonly neglected by developers. Moreover, it is said to be the least understood,
documented, and tested part of the implementation of a system. In spite of this scenario,
there are very few studies that analyze the actual exception handling bugs that occur in
real software systems and no study that attempts to understand developers’ perceptions
about these bugs.

In this work we present an exploratory study on exception handling bugs that em-
ploys two complementary approaches: a survey of 154 developers and an analysis of
220 bugs from the repositories of Eclipse and Tomcat. Respondents of our survey be-
lieve that exception handling bugs are more easily fixed than other kinds of bugs. There
is also a significant difference in the opinion of the respondents pertaining to the quality
of the exception handling code: more experienced developers tend to believe that it is
worse.

Analysis of the repositories of Eclipse and Tomcat revealed conflicting results. The
fix time for exception handling bugs in Eclipse is significantly shorter than for other
bugs. However, exception handling bugs have a significantly greater number of discus-
sion messages than non-exception handling bugs. On the other hand, for Tomcat, we
could not find a significant difference for fix time and exception handling bugs have
significantly less discussion messages than other bugs.

Moreover, we discovered that bug reports describing bugs stemming from overly
general catch blocks, a well-known bad smell in programs that use exceptions, are
rare, even though there are many opportunities for them to occur. In addition, empty
catch blocks are not only prevalent, as previously reported in literature, but they are
also commonly used as part of bug fixes, which includes fixes for exception handling
bugs. Furthermore, we found very few bug reports whose causes are empty catch

blocks, although developers often mention them as causes of bugs they have fixed in the
past. And lastly, we present a proposal of the classification of exception handling bugs
based on the data we collected.

Keywords: Exception Handling; Bugs; Survey; Repository Mining.

vii

List of Figures

2.1 Exception handling mechanism [GRRX01]. 7
2.2 Exception handling in Java [htt13b] 8
2.3 A basic example of exception handling in Java. 9
2.4 Swallowed exception antipattern. 10
2.5 Log and throw antipattern. 10
2.6 Throwing Exception antipattern. 11
2.7 Throwing the kitchen sink antipattern. 11
2.8 Catching Exception antipattern. 12
2.9 Destructive wrapping antipattern. 12
2.10 Log and return null antipattern. 12
2.11 catch and ignore antipattern. 13
2.12 throw from within finally antipattern. 13
2.13 Multi-line log messages antipattern. 14
2.14 Relying on getCause() antipattern. 14

3.1 Real exception handling bug from Eclipse - bug ID 21018. 18
3.2 Real non-exception handling bug from Eclipse - bug ID 81417. 18
3.3 Life cycle of a bug in Bugzilla [htt13a]. 20

4.1 Graphic of the density of fix time. 36
4.2 Graphic of the density of comments. 36
4.3 An example of "exception not handled" from Eclipse - bug ID 298250. . 39
4.4 An example of "error in the handler" from Eclipse - bug ID 170237. . . 40
4.5 An example of "exception that should not be thrown" from Tomcat - bug

ID 18698. 40
4.6 An example of "exception not thrown" from Tomcat - bug ID 8200. . . 41
4.7 A empty catch block patch for Eclipse, bug ID 139160. 42
4.8 A empty catch block patch for Tomcat, bug ID 24368. 42
4.9 The implementation of many handlers for Throwable in Tomcat. . . . 44

viii

List of Tables

3.1 Summary of Eclipse bugs. 21
3.2 Summary of Tomcat bugs. 21
3.3 Summary of survey questions. 23

4.1 For how long have you been a Java developer? 24
4.2 What is the approximate size of the project you are currently working on? 25
4.3 Which programming languages have you professionally worked with? . 25
4.4 Why do developers use exception handling? 27
4.5 Priorities, severities, resolutions, status, and the presence of attachments

for exception handling and non-exception handling bug reports for Eclipse
(a) and Tomcat (b). 29

4.6 How often do you find bugs related to exception handling? 31
4.7 How often do you find bugs that are not related to exception handling? . 31
4.8 How often are bugs reported at your organization? 32
4.9 How often are bugs related to exception handling reported at your orga-

nization? . 32
4.10 What is the average level of difficulty to fix bugs related to exception

handling? . 33
4.11 What is the average level of difficulty to fix other bugs that are not related

to exception handling? . 33
4.12 What is the average priority / severity of reported bugs related to excep-

tion handling code? . 34
4.13 Fix time in days and number of discussion messages for exception han-

dling bugs and for other bugs. 35
4.14 What are the main causes of exception handling bugs? 38
4.15 Exception handling bug classification according to repository analysis. . 39
4.16 Merged classification terms. 45
4.17 Comprehensive classification of exception handling bugs. 46

A.1 Questionnaire about exception handling bugs 60

B.1 Exception handling bugs of Eclipse 67
B.2 Exception handling bugs of Tomcat 70

ix

Contents

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Problem . 2
1.2 Objective . 2
1.3 Contribution . 3
1.4 Outline . 4

2 Background 5
2.1 Exception Handling . 5
2.2 Exception Handling in Java . 7
2.3 Exception Handling Antipatterns in Java 9

2.3.1 Swallowed Exception . 9
2.3.2 Exception Not Handled at Appropriate Level 10
2.3.3 Log and throw . 10
2.3.4 Throwing Exception . 10
2.3.5 Throwing The Kitchen Sink 11
2.3.6 Catching Exception . 11
2.3.7 Destructive Wrapping . 12
2.3.8 Log and return null . 12
2.3.9 catch and Ignore . 13
2.3.10 throw from Within finally 13
2.3.11 Multi-Line Log Messages . 13
2.3.12 Relying on getCause() . 14

3 Methodology 15
3.1 What is an Exception Handling Bug? 16
3.2 Repository Analysis . 19
3.3 Survey . 22

4 Study Results 24
4.1 RQ1: Do organizations and developers take exception handling into ac-

count? . 25

x

4.1.1 Survey . 26
4.1.2 Repository Analysis . 28

4.2 RQ2: How commonplace are exception handling bugs? 30
4.2.1 Survey . 30
4.2.2 Repository Analysis . 32

4.3 RQ3: Are exception handling bugs harder to fix than other bugs? 32
4.3.1 Survey . 33
4.3.2 Repository Analysis . 34

4.4 RQ4: What are the main causes of exception handling bugs? 37
4.4.1 Survey . 37
4.4.2 Repository Analysis . 38

4.5 Discussion . 42
4.5.1 Exception Handling Bug Classification 45

4.6 Threats to Validity . 47

5 Conclusion 50
5.1 Related Work . 51
5.2 Future Work . 54

References 55

Appendix 59

A Survey 60

B Exception Handling Bugs 67
B.1 Exception Handling Bugs of Eclipse 67
B.2 Exception Handling Bugs of Tomcat 70

C R Scripts 75
C.1 Eclipse R Script . 75
C.2 Tomcat R Script . 80

xi

1
Introduction

Owing to the complexity and pervasiveness of modern software systems, many of these
systems must include provisions to handle errors at runtime, both because of unde-
tected bugs and because of environmentally-triggered erroneous conditions (e.g., fail-
ure to open a file, connect to a database or to communicate via network). It is in-
evitable that these developed systems still contain faults, or bugs, arising from a vari-
ety of causes [XRR+, Som10]. Moreover, sometimes software systems are faced with
situations where they cannot proceed with the execution. Therefore, it is necessary to
include ways to deal with the manifestation of these bugs at runtime in such systems, or,
in a broader sense, situations where the system is not able to proceed according to the
specification. As such, mechanisms and techniques such as exception handling [Goo75]
are needed to deal with errors in the systems.

Software systems basically work by doing two basic operations: receiving user
requests and producing answers for the users, or sometimes just processing their re-
quests. Either way, if a system cannot process a request, it should return an excep-
tion [GRRX01]. In Software Engineering, exceptions are thrown when an error is iden-
tified and they point to some problem in the system or in the environment with which it
interacts.

There are two types of response for those systems: normal, which occurs when a
software component (in a broader sense: a method, a function, a module, or a whole
system) proceeds in processing the request correctly, and exceptional responses, which
occur when the system is not able to process the request and produce a normal response.
In this case, the system should raise an exception that should be handled. In other words,
the exception handler (which is the entity that handles exceptions) responsible for the
execution should be triggered and should execute the actions to solve the problem. Such
handlers implement the exceptional behavior. Systems capable of handling errors during

1

1.1. PROBLEM

execution time to bring the system back to a consistent state are called fault-tolerant.
Exception handling helps to improve fault tolerance in software systems by sep-

arating the main logical execution flow from the flow which handles the exceptional
responses of the system. Exceptional conditions can be triggered by bugs or situations
which need specific treatment because they intrinsically can fail, for example, I/O oper-
ations or database operations.

1.1 Problem

Several modern object-oriented programming languages, like Java, Ruby, C#, and C++,
implement exception handling. Moreover, it is often the case that a considerable part of
the source code of a system is dedicated to error detection and handling [CM07, WN08].
Nevertheless, developers tend to focus on the normal behavior of the applications and
deal with error handling only during the system implementation, in an ad hoc manner.

This practice creates a proper situation for the appearance of design faults or bugs.
Several studies [Cri89, RS03, SGH10] argue that exception handling code is usually of
poor quality and that it is commonly neglected by developers. There is another prob-
lem with the exception handling code: it is usually hard to test it because of the huge
number of exceptional conditions there are in the code and also it is difficult to stimu-
late all possible exception causes during tests for complex systems [CvSK+11]. In spite
of this scenario, there are very few studies that analyze the actual exception handling
bugs that occur in real software systems and there is no study that attempts to under-
stand developers’ perceptions about these bugs. A more in-depth comprehension about
exception handling bugs can help developers to avoid them. Moreover, it can point out
to researchers and tool designers some of the problems that they could be addressing.

1.2 Objective

Our goal is to analyze bugs reported in software projects and to find out if it is common
that those bugs are caused by the use of exception handling. Additionally, we are inter-
ested in developers’ perception about exception handling and exception handling bugs
because these perceptions do not necessarily mirror the state-of-the-practice concerning
exception handling bugs.

The main questions that we are interested in answering in this work are the following:

• Do organizations and developers take exception handling into account?

2

1.3. CONTRIBUTION

• How commonplace are exception handling bugs?

• Are exception handling bugs harder to fix than other bugs?

• What are the main causes of exception handling bugs?

From the developers’ perception, we are interested in obtaining answers such as:
what their opinion about the quality of code that handles exceptions is; how frequent
they find exception handling bugs; how complex they are; what the most common causes
are; and whether they are used to documenting those kinds of bugs.

We aim to gather all the above mentioned information from both bug reports and
from developers in order to understand exception handling bugs: what developers do
about exception handling bugs and what developers say about them. We also compare
our results with some existing studies in this area [RS03, ZE12, CM07, SGH10] and
analyze how exception handling bugs manifest in the real world. We employ two com-
plementary approaches to achieve this: a survey of developers and an analysis of the bug
repositories of Tomcat and Eclipse.

1.3 Contribution

The main findings of this work are:

• Most of respondents of our survey believe that exception handling bugs are more
easily fixed than other kinds of bugs;

• There is a significant difference in the opinion of the respondents pertaining to
the quality of the exception handling code: more experienced developers tend to
believe that it is worse;

• Less experienced developers think that the priority / severity of exception handling
bugs is lower than other kinds of bugs, even though they estimate that the percent-
age of exception handling bugs is bigger than non-exception handling bugs;

• Analysis of the repositories of Eclipse and Tomcat revealed conflicting results.
The fix time for exception handling bugs in Eclipse is significantly shorter than for
other bugs. However, exception handling bugs have a significantly greater number
of discussion messages than non-exception handling bugs. On the other hand,
for Tomcat, we could not find a significant difference for fix time and exception
handling bugs have significantly less discussion messages than other bugs;

3

1.4. OUTLINE

• We discovered that bug reports describing bugs stemming from overly general
catch blocks, a well-known bad smell in programs that use exceptions, are rare,
even though there are many opportunities for them to occur and developers say
that they have encountered bugs with these characteristics in the past;

• Empty catch blocks, another well-known bad smell, are not only prevalent, as
previously reported in literature, but also commonly used as part of bug fixes, in-
cluding fixes for exception handling bugs. Moreover, developers often state in the
code, by means of comments, that these catch blocks do not capture exceptions
in practice;

• We found very few bug reports whose causes are empty catch blocks, although
developers often mention them as causes of bugs they have fixed in the past;

• We present a proposal of the classification of exception handling bugs based on
the data we collected;

• We can also consider the data set obtained from this research as a contribution for
future works.

1.4 Outline

The remainder of this dissertation is organized as follows:

• Chapter 2 presents the main concepts required to understand this work. We intro-
duce exception handling definition and concepts;

• Chapter 3 presents the methodology used in this work;

• Chapter 4 presents the results from the survey and the analysis of the bug reposi-
tories. We also propose an exception handling bug classification;

• Chapter 5 summarizes the contributions and conclusions of this work. It also
discusses related work and future work.

And finally, the appendices are presented as follows:

• Appendix A presents the complete questionnaire used in this work;

• Appendix B presents the complete list of exception handling bugs found in the
bug repositories analysis.

4

2
Background

"Everybody hates thinking about exceptions,
because they’re not supposed to happen"

—BRIAN FOOTE

In this chapter we discuss some of the most important topics regarding exception
handling and exception handling bugs. Firstly, we introduce exception handling in Sec-
tion 2.1. In Section 2.2 we discuss Java exception handling. Lastly, in Section 2.3 we
present some of the most common exception handling antipatterns.

2.1 Exception Handling

Programming languages should provide primitives to help developers to deal with ab-
normal situations in systems and to recover from them. An exception handling [Goo75]
mechanism aims to improve modularity and robustness of programs in two ways: ex-
plicit separation of the code that handles the exceptional behavior from the normal code
and declaration of exceptional interfaces [CvSK+11]. Moreover, it is exception han-
dling’s responsibility to change the normal control flow of the program to the exceptional
control flow. Exception handling usually provides constructs to signal the occurrence of
an error (to throw an exception) and to create a way to recover from the error (to catch
and handle the exception).

Before explaining exception handling, we should introduce some general concepts [GRRX01]:

• Failure: Is a deviation of the program’s specification;

• Error: Is an intermediate state which comes from the fault and can result in a fail-
ure later on. An error corresponds to an inconsistency in the state of the program;

5

2.1. EXCEPTION HANDLING

• Fault: Is the cause of the error. Usually classified as: (i) physical faults: those
originating from software components, and (ii) human faults: those originating
from software projects. The term bug is a synonym for human fault;

• Exception: Indicates a problem during the execution of a program. Exceptions
are thrown (or signaled) when errors are identified and, may or may not make the
program present a failure.

When discussing exception handling, it is also important to discuss the concepts of
protected region, exception handler and clean-up action [GRRX01]:

• Protected region: Is a delimited part of the code liable to raise exceptions. Each
protected region can have a set of associated handlers;

• Handler: Is the part of the code that handles the exception and is attached to the
protected region;

• Clean-up action: A protected region may or may not have a clean-up action. It
is the part of the code that performs actions to keep the program state consistent
irrespective of an exception being thrown. A clean-up action is always executed
after the execution of the protected region, regardless of whether an exception was
thrown or not.

Exceptions can be divided into two basic types [GRRX01]: (i) internal exceptions,
which are those handled by handlers associated with the protected region where the
exception was thrown and (ii) external exceptions, which are those captured by handlers
associated with other protected regions. This is because the component which raised the
exception does not contain a handler for that exception in its protected region.

Figure 2.1 presents a high level view of the way in which exception handling works,
extracted from the work of Garcia et al [GRRX01]. The program is executing the normal
control flow when an exception E1 is detected in method m2 (arrows 1 to 5 in Figure 2.1).
This method then signals the exception. The code block that raised the exception is
the protected region of the exception. Now the exception mechanism needs to find an
exception handler to deal with the exception (arrow 6). At this point, the normal control
flow is stopped and the exceptional control flow starts. As we can see in Figure 2.1, the
exceptions e2, e3 and e4 are internal for m2, whereas E1 and E5 are external. Since m2
has no handler for exception E1, it propagates that exception to its caller. The runtime
of the language is then responsible for seeking a handler in the caller of m2, method m1.

6

2.2. EXCEPTION HANDLING IN JAVA

Figure 2.1 Exception handling mechanism [GRRX01].

The handler for exception E1 is in method m1 (arrow 7). After handling the exception,
the exception mechanism returns the system to the normal control flow (arrow 8).

2.2 Exception Handling in Java

Exception handling in Java does not make any distinction between internal and external
exceptions. They are treated in the same way. Protected regions are defined by try

blocks. The handlers are defined by catch blocks and the clean-up actions are defined
by finally blocks. The throw statement is used to signal an exception. Exception
handling in Java is called safe because its compiler can do static checking of the code
in an elaborated way. This is because the developer is required to declare all checked
exceptions, as explained below.

As Java is an object-oriented language, exceptions are objects of classes that are
subclasses of Exception. Hence, developers can create new exception types as sub-
classes of other exceptions. Exceptions are structured in an hierarchical way as we can
see in Figure 2.2.

There are basically two types of exception in Java: checked and unchecked ex-
ceptions. Checked exceptions inherit from the Exception class or directly from
Throwable class, and unchecked exception inherit from the Error class or RuntimeException

7

2.2. EXCEPTION HANDLING IN JAVA

Figure 2.2 Exception handling in Java [htt13b]

class. As an Error is considered an irrecoverable condition, Barbosa:2012:RSEOracle
actually considers three types of exceptions:

• Checked exceptions are checked at compile-time and need to be explicitly han-
dled by the program. Some examples of checked exceptions are: IOException
and SQLException as we can see in Figure 2.2;

• Unchecked exceptions are not checked at compile-time. Rather they are checked
only at runtime. They do not need to be explicitly handled in the program and also
do not need to be specified in the method signature. Some examples of unchecked
exceptions are NullPointerException, ArithmeticException, and
NumberFormatException as we can see in Figure 2.2;

8

2.3. EXCEPTION HANDLING ANTIPATTERNS IN JAVA

• Error is an unrecoverable condition, e.g., a virtual machine problem. Some
examples of errors are: VirtualMachineError, AssertioError, and
OutOfMemoryError as we can see in Figure 2.2.

Figure 2.3 shows a simple example of exception handling in Java. The method
m1, or any method it calls, can throw the exception of type SomeException, or
a subclass of SomeException. As we discussed before, SomeException is a
checked exception because the compiler checks whether it is explicitly handled or ex-
plicitly appears in the throws clauses of methods that throw it. Therefore, when
SomeException is thrown the exception handling mechanism transfers execution to
the exceptional control flow. The exception handling mechanism starts the search for a
handler for SomeException. As it is an internal exception, the handler is in the same
class. Then the handler starts its execution. In this case, the handler only logs the oc-
currence of the exception. There is also a clean-up action for this protected region. The
finally block will always be executed, whether the SomeException is thrown or
not.

// some method
try() {

m1();
} catch (SomeException e) {

Logger.log(e.getMessage());
} finally {

clear();
}

Figure 2.3 A basic example of exception handling in Java.

2.3 Exception Handling Antipatterns in Java

In this section we present some well-known exception handling antipatterns in Java.
This list is based on [RS03] and [McC06].

2.3.1 Swallowed Exception

The exception handler should never ignore exceptions. If it does not log, handle, or re-
throw the exception we say that the exception is swallowed. In this case, if an exception
occurs, there will be no record of it in the system and it will be much harder for the

9

2.3. EXCEPTION HANDLING ANTIPATTERNS IN JAVA

support team to find the problem. Figure 2.4 shows a simple example where exception
SomeException is swallowed:

try() {
m1();

} catch (SomeException e) {
}

Figure 2.4 Swallowed exception antipattern.

2.3.2 Exception Not Handled at Appropriate Level

Exceptions should be handled as near as possible to the source of the problem. If the
exception is handled a long way up the call chain, it will be more difficult to debug the
code and the error message will be less meaningful.

2.3.3 Log and throw

The exception handler should either log or throw the exception, not do both. It is wrong
to do both because it makes life hard for the support team to fix the bug when there are
log messages spread all over the code. Since the logged exception will be rethrown the
exception will be logged again whenever it is caught. McCune [McC06] considers this
antipattern one of the most annoying. Figure 2.5 shows an example of the Log and
throw antipattern:

try() {
m1();

} catch (SomeException e) {
Logger.log(e.getMessage());
throw e;

}

Figure 2.5 Log and throw antipattern.

2.3.4 Throwing Exception

Methods should never declare throws Exception because it is the most generic
exception type in Java. It defeats the goal of using checked exceptions. Instead, the

10

2.3. EXCEPTION HANDLING ANTIPATTERNS IN JAVA

developer should use the most specific type of exception being thrown. Figure 2.6 shows
an example of the Throwing Exception antipattern:

public void m1() throws Exception {
int x = 2;
m2(x);

}
public void m2(int i) {

if (i < 5) {
throw new SomeException();

}
}

Figure 2.6 Throwing Exception antipattern.

2.3.5 Throwing The Kitchen Sink

Methods should never throw multiple checked exceptions when they basically mean the
same thing to the caller. Instead, they should be wrapped in a single checked exception.
Figure 2.7 shows an example of this antipattern:

public void m(String s) throws SomeException,
OtherException, AnotherException,
SomeOtherException, YetAnotherException {

String client = s;
// do something...

// SomeExcetion: string client is null
// OtherException: string client is invalid
// AnotherException: string client is empty

}

Figure 2.7 Throwing the kitchen sink antipattern.

2.3.6 Catching Exception

McCune [McC06] says "This is generally wrong and sloppy". If the method’s handler
just catches Exception, or even worse Throwable, it might accidentally capture ex-
ceptions that should be handled elsewhere. Figure 2.8 shows an example of the Catching
Exception antipattern:

11

2.3. EXCEPTION HANDLING ANTIPATTERNS IN JAVA

try() {
m1();

} catch (Exception e) {
Logger.log(e.getMessage());

}

Figure 2.8 Catching Exception antipattern.

2.3.7 Destructive Wrapping

The handler should never catch an exception and throw another exception losing the
stack trace of the original exception. McCune [McC06] says "This destroys the stack
trace of the original exception, and is always wrong". Figure 2.9 shows an example of
the Destructive Wrapping antipattern:

try() {
m1();

} catch (SomeException e) {
throw new OtherException("Exception:"+e.getMessage());

}

Figure 2.9 Destructive wrapping antipattern.

2.3.8 Log and return null

This antipattern is not always incorrect, but it is commonly wrong. The correct way
of reporting errors is by throwing exceptions and letting the callers handle them. Re-
turning null should be used only in a normal situation and not in an exceptional one.
Figure 2.10 shows an example of the Log and return null antipattern:

try() {
m1();

} catch (SomeException e) {
Logger.log(e.getMessage());
return null;

}

Figure 2.10 Log and return null antipattern.

12

2.3. EXCEPTION HANDLING ANTIPATTERNS IN JAVA

2.3.9 catch and Ignore

The handler should never only return null because it will lose the exception infor-
mation. It should handle or rethrow the exception instead. This problem is just a special
case of Swallowed Exception 2.3.1 Figure 2.11 shows an example of the catch and
Ignore antipattern:

try() {
m1();

} catch (SomeException e) {
return null;

}

Figure 2.11 catch and ignore antipattern.

2.3.10 throw from Within finally

When there is a method call inside the try block that can throw an exception and there
is a method call in the finally block that can throw another exception as well, this
is a problematic situation. The first exception thrown by the try block will be lost if
the exception from the finally block is thrown. A more appropriate way of dealing
with exceptions within a finally block would be handling or logging the exception
and not letting it bubble out. Figure 2.12 shows an example:

try() {
m1(); // throws SomeException...

} finally {
clear(); // throws AnotherException...

}

Figure 2.12 throw from within finally antipattern.

2.3.11 Multi-Line Log Messages

Logging messages should be put together into as few calls as possible and also the log
method should be called as infrequently as possible, ideally at most once per catch or
finally block. The log file might end up comprising thousands of lines if there are
too many log messages in the code or too many calls to the log method. Figure 2.13
shows an example code of Multi-Line Log Messages:

13

2.3. EXCEPTION HANDLING ANTIPATTERNS IN JAVA

try() {
m1();

} catch (SomeException e) {
Logger.log(‘‘The exception was thrown...’’);
Logger.log(‘‘Please contact support...’’);
Logger.log(‘‘The problem is...’’);

}

Figure 2.13 Multi-line log messages antipattern.

2.3.12 Relying on getCause()

This is not necessarily a problem. However, if the system implementation changes (for
example, so that the exception cause is now wrapped in another one), it can break excep-
tion handling. A call to getCause() on the outermost exception object would produce
an exception object that would not correspond to the original cause of the problem. In
this case the code should rely on e.getCause().getCause(). The ideal approach
should be relying on the getRootCause() method. Figure 2.14 shows an example
of Relying on getCause(), in this case the program would fail because getCause()
will not get the correct exception cause.

try() {
int temperature = 50;

} catch (SomeException e) {
if (e.getCause() instanceof OtherException) {

temperature = 45;
throw new AnotherException();

}
} catch (AnotherException ae) {

throw new YetAnotherException(ae);
}

Figure 2.14 Relying on getCause() antipattern.

14

3
Methodology

In this chapter we describe the methodology of this study. It aims to answer four research
questions:

• RQ1: Do organizations and developers take exception handling into account?

• RQ2: How commonplace are exception handling bugs?

• RQ3: Are exception handling bugs harder to fix than other bugs?

• RQ4: What are the main causes of exception handling bugs?

In addition, we aim to contrast the perceptions of developers regarding exception
handling bugs and their actions considering the bugs that get reported. However, as
the title of this work emphasizes, this study is exploratory. As such, we want to find
questions as much as answers about exception handling bugs.

To gather information about developers’ perceptions and intentions about excep-
tion handling bugs, a self-administered questionnaire was conducted to get both di-
rect and discursive responses. We also examined the bug repositories of two target
applications: Tomcat and Eclipse. We chose these two systems because they are ma-
ture and large systems, both written in Java, the language that arguably popularized
exception handling. Additionally, they were examined in a number of empirical stud-
ies [LS07, ZPZ07, Mar11, SCA10]. Furthermore they use Bugzilla as their bug reporting
system, which has powerful search features.

This chapter is organized as follows: Section 3.1 starts out by discussing what "ex-
ception handling bug" means. Section 3.2 then proceeds to explain how we analyzed the
repositories of Tomcat and Eclipse. Finally, Section 3.3 presents the questionnaire that
we administered.

15

3.1. WHAT IS AN EXCEPTION HANDLING BUG?

3.1 What is an Exception Handling Bug?

The first methodological issue that we must address in this work is to define what we
mean by exception handling bugs. There is no widely accepted definition of exception
handling bug. In this study we want to select bug reports where exception handling is
associated with the cause of the problem. Bugs in exception definition, exception throw-
ing, exception handling, exception propagation, exception documentation and clean-up
actions (finally blocks) are all of interest. Therefore, an exception that is not thrown
when it should be according to the expected behavior of the system is an exception han-
dling bug. The same applies to a catch block that captures exceptions that it should
not. For simplicity, other approaches for signaling and handling errors, such as return
codes [BvDT06], are not covered by our study. As such, we can create a general defini-
tion of exception handling bug:

Exception Handling Bug: Is a bug whose cause is related to exception
handling. There are several kinds of bugs regarding exception handling:

• In the definition of the exception;

• When the exception is thrown;

• When the exception is handled;

• In the propagation of the exception;

• In the documentation of the exception;

• In the clean-up action of a protected region where the exception is
thrown;

• When the exception should be thrown and it is not;

• When the exception should be handled and it is not.

A previous study on the subject [SAW12] defines exception handling bugs ("de-
fects") in terms of bug reports that include any mention of the words "exception", "throw",
and "threw" or its derivatives, e.g., "exceptional", "exceptions", "thrown", words ending
with "exception", etc. We believe that this liberal approach allows for a number of bugs
that are not related to exceptions to be taken into consideration. For example, if a pro-
gram performs a division by zero, that error will be trapped by the runtime system of the
language (in the case of Java and C#, among others) and an exception will be thrown.
The raising of the exception in this case is not the cause of the problem. Instead, it is

16

3.1. WHAT IS AN EXCEPTION HANDLING BUG?

a mechanism for the runtime system to indicate that some problem occurred. From a
bug fixing perspective, as soon as the bug is fixed, the part of the code where the bug
manifested will not necessarily have a relationship with exception handling anymore.
Therefore, we do not consider this to be an exception handling bug. Nevertheless, it
would still be treated as such in the aforementioned study [SAW12]. On the other hand,
if a catch block throws a NullPointerException when it should be throwing an
IOException, even after the bug is fixed the locus of its manifestation will still be
associated with exception handling (catch block) and throwing (because it is expected
to throw IOEXception). Thus, we consider this to be an exception handling bug.

Clearly identifying exception handling bugs is important. Exception handling is a
complex mechanism. Some consider that it is so complex that it should not be used at
all [Bla82]. However, many modern languages include exception handling mechanisms
and programmers do use them in practice [CM07, WN08]. By analyzing bugs that
are directly related with these mechanisms, we want to better understand the impact of
this complexity on software development. Taking into account every bug that mentions
exceptions, even if its cause has nothing to do with exceptions, defeats this purpose.

Figures 3.1 and 3.2 present two real bugs, one related to exception handling and the
other unrelated. Figure 3.1 shows a real exception handling bug (ID 21018) case from
Eclipse’s bug repository. The problem reported was that a core exception was being
thrown: "junit wizard: core exception not handled [JUnit]". After some discussion
and analysis, the support team found out that the problem was in the exception handler.
We can clearly see that the cause of the problem is that the exception was not being
correctly handled, as the patch changes the catch code so that instead of only logging
the exception, now the handler does something else.

Figure 3.2 shows a real non-exception handling-related bug (ID 81417) from Eclipse’s
bug repository. The problem reported in this case was a NullPointerException
being thrown. The support team discovered that the problem was a null check not be-
ing done. In this case, we can clearly see that the problem was not related to exception
handling because the cause of the bug was regarding to the application’s business rules:
some program field should not be null and the program did not check that. In the patch
we can see that there is no code related to exception handling.

17

3.1. WHAT IS AN EXCEPTION HANDLING BUG?

///////////////// ORIGINAL CODE ///////////////////
monitor.done();
fUpdatedExistingClassButton= true;

} catch (JavaModelException e) {
JUnitPlugin.log(e);

}
}

///////////////// PATCH CODE ///////////////////
monitor.done();
fUpdatedExistingClassButton= true;

} catch (JavaModelException e) {
String title= WizardMessages.getString

("NewTestSuiteWizPage.error_tile"); //$NON-NLS-1$
String message= WizardMessages.getString

("NewTestSuiteWizPage.error_message"); //$NON-NLS-1$
ExceptionHandler.handle(e, getShell(), title, message);

}
}

Figure 3.1 Real exception handling bug from Eclipse - bug ID 21018.

///////////////// ORIGINAL CODE ///////////////////

return declaringType.getTypeParameter(typeVariableName);

}

} else {

// member or top level type

ITypeBinding declaringTypeBinding = getDeclaringClass();

if (declaringTypeBinding == null) {

///////////////// PATCH CODE ///////////////////

return declaringType.getTypeParameter(typeVariableName);

}

} else {

if (fileName == null) return null;

// case of a WilCardBinding

// that doesn’t have a corresponding Java element

// member or top level type

ITypeBinding declaringTypeBinding = getDeclaringClass();

if (declaringTypeBinding == null) {

Figure 3.2 Real non-exception handling bug from Eclipse - bug ID 81417.

18

3.2. REPOSITORY ANALYSIS

3.2 Repository Analysis

Mining software reposiroty [KCM07] was used in this work, we analyzed the metadata
from the bug reposiroty of Eclipse and Toncat: the Bugzilla. It is a bug tracking sys-
tem that maintains the history of the entire lifecycle of a bug. To search the Bugzilla
repositories of the two target applications, we employed the following search string:

catch OR caught OR handl OR exception OR throw OR finally OR raise
OR signal

These terms encompass related terms that might also be relevant, such as "catches",
"raises", "thrown", etc., because Bugzilla considers each search word as a radical to
query the database. We tried to cover most of the bug reports related to exception
handling bugs with that search string. We think that all those keywords have a high
probability of being related to exception handling issues.

Even though Eclipse and Tomcat use Bugzilla, they can have some differences in
their layout in search. For example, they can, and in fact they do have, different status
and resolution categories to be used in the search. Moreover, there are several fields
we can select from the project in the search: classification, product, component, status,
resolution, priority, severity, version, and others. Below we describe which fields were
used to search the bug repositories of Eclipse and Tomcat.

Figure 3.3 shows the life cycle of a bug in Bugzilla system. There are two possibili-
ties for the birth of the bug: it is created as unconfirmed and then someone confirms that
it is a bug or it is created already as a confirmed bug, if it is possible to say that it is a bug
in fact. When someone starts working on it, the status is changed to in_progress. When
the assigned developer finishes working on that bug, it is marked as resolved and there
are several possible resolutions:

• Fixed: The bug is fixed;

• Duplicate: The bug is a duplicate of another existing bug;

• Worksforme: Support team was not able to reproduce the bug and so there was no
solution;

• Wontfix: The issue reported is a bug which will never be fixed;

• Invalid: The issue reported is not a bug.

19

3.2. REPOSITORY ANALYSIS

Figure 3.3 Life cycle of a bug in Bugzilla [htt13a].

If the support team verifies that the solution is fine, the bug is marked as verified. If
the solution is not fine the bug is marked again as confirmed and the process starts over.

As Eclipse is a huge project, it would be impossible to use all its components in the
search. Hence, we selected only parts of it. Starting with the classification, we selected
only the "Core" Eclipse IDE, and left out components such as Mylyn, BIRT, and so
on. Under Eclipse, we selected only the product JDT (Java Development Tools) so we
could analyze only components related to the Java IDE. Under JDT, we selected only
the components Core (Java IDE headless infrastructure) and User Interface (Java IDE
user interface). We selected those two components because we consider they are the
most important of the Java IDE and they are coarse-grained components implementing
different functionalities. Each comprises tens of thousands of lines of code and, more
importantly, there are 26,002 bug reports associated with them1. In terms of bug statuses,
we only exclude unconfirmed. This is because we do not consider a bug in fact if it has

1As of 01/23/2013.

20

3.2. REPOSITORY ANALYSIS

not been confirmed yet. We included all the possible resolutions ("—" [still open], fixed,
wontfix, worksforme, moved) in the search, except for invalid, duplicate, and not_eclipse.
We ignore duplicates because there is already another entry for the real bug. The search
in Eclipse’s bug repository returned 1,779 bug reports out of 26,002. Manual analysis
of the 1,779 bug reports yielded 92 exception handling bugs. The manual analysis was
conducted by analyzing each bug report, reading all comments in the report and checking
the patch code of the bug when available. We need to emphasize that this analysis relied
on subjective judgement and we spent almost 3 months to finish all analysis for both
tools (Eclipse and Tomcat).

For Tomcat, we included all Tomcat products in the search: versions 3 to 8, Con-
nectors, Modules, and Native. We selected all components for all products. All statuses
were included (new, assigned, reopened, needinfo, resolved, verified, closed) except
for unconfirmed. This is because unconfirmed bugs reports are not necessarily bugs.
We included all the possible resolutions ("—" [still open], fixed, wontfix, later, remind,
worksforme, moved) in the search, except for invalid and duplicate. We ignore dupli-
cates because there is already another entry for the real bug. The search in Tomcat’s bug
repository returned 740 bug reports out of a total of 6,8552. In the end, we found 128
exception handling bugs in the Tomcat repository after the manual analysis. Tables 3.1
and 3.2 summarize these numbers for both Eclipse and Tomcat.

Table 3.1 Summary of Eclipse bugs.
Exception handling bugs 92 0.35%
Bugs resulting from the search 1,779 6.84%
Other kind of bugs 25,910 99.65%
Total number of bugs 26,002 100%

Table 3.2 Summary of Tomcat bugs.
Exception handling bugs 128 1.87%
Bugs resulting from the search 740 10.80%
Other kind of bugs 6,727 98.13%
Total number of bugs 6,855 100%

The bug reports were downloaded as a set of XML files and manually analyzed.
After that, we employed a Java program to prepare the data set to be analyzed by an
R [R93] script to process the exception handling bug results. With the R script we could

2As of 01/23/2013.

21

3.3. SURVEY

generate statistics and graphics of the results, Appendix C show all R scripts used in this
work.

3.3 Survey

The questionnaire used in this work was designed according to the recommendations
of [GFC+09, KP08], following the phases prescribed by the authors: planning, creating
the questionnaire, defining the target audience, evaluating, conducting the survey, and
analyzing the results. Firstly, we defined the topics for the questions. The topics are: re-
spondents’s experience, the languages they are familiar with, how the phases of project
design, documentation and testing in their organizations are done, and lastly, we asked
direct questions about exception handling and exception handling bugs. The question-
naire has 24 questions and it is structured to limit responses to multiple-choice, Likert
scales (responses given in a scale), and also free-forms.

Our target population consists of developers with some experience in Java. After
defining all the questions on the questionnaire, we obtained feedback iteratively and
clarified and rephrased questions and explanations. This feedback was obtained from
analysis and discussion with a group of specialists and also from two pilots of the sur-
vey. We also added new questions and removed existing ones based on this feedback.
Table 3.3 presents the main questions on the questionnaire. The whole survey is available
in Appendix A. The data we collected was analyzed with both descriptive and inferential
statistics. For the former, for example, we employed the mean and median, and for the
latter we employed Student’s T-test [MR06] where appropriate. The tool used to process
the data was R, the same as in the repository analysis. For some questions, we analyzed
the results based on the experience of the respondents with Java development. We con-
sidered a developer to be novice if he/she claimed to have 5 or less years of experience in
software development. We considered a developer to be experienced if he/she claimed
to have more than 10 years of experience.

The questionnaire was sent to two distinct groups of people. The first one consisted
mostly of Portuguese-speaking developers in Brazilian companies and universities. We
sent the questionnaire to known points of contact and asked them to redistribute it within
their organizations. The second group consisted of bug reporters and developers of
Eclipse and Tomcat. Over a period of 2 months we sent more than 4,000 emails. In
total we obtained 154 responses, 96 from Portuguese-speaking and 58 from developers
of Eclipse and Tomcat.

22

3.3. SURVEY

Table 3.3 Summary of survey questions.
Experience 1. For how long have you been a Java developer?

2. What is the approximate size of the project you are currently working on
(LoC estimate)?
3. Which programming languages have professionally worked with?

Context 4. In the design phase of your projects, what is the importance given to the
documentation of exception handling?

Documentation 5. Are there any specifications, documented policies or standards that are part
of your organization’s culture related to the implementation of error handling?
6. How often are bugs reported at your organization?
7. How often are bugs related to exception handling reported at your
organization?
8. Does your organization use any tool for reporting and keeping track of bugs?

Testing 9. Are there specific tests for the exception handling code in your organization?
Bugs 10. How often do you find bugs related to exception handling?

11. How often do you find bugs that are not related to exception handling?
12. Estimate the percentage of bugs related to exception handling code in your
projects (estimate a value between 0 and 100%).
13. Have you ever needed to fix bugs related to exception handling?
14. If you answered yes to the previous question, please describe some of these
situations.
15. Select the main causes of bugs related to exception handling you have
ever needed to fix, analyze or have found documented (you can select more
than one answer).
16. What is the average level of difficulty to fix bugs related to exception
handling?
17. What is the average level of difficulty to fix other bugs that are not related to
exception handling?
18. Why do you use exception handling in your projects? (you can select more
than one answer)
19. What is your opinion about the quality of exception handling code in your
projects compared to other parts of the code?
20. What is the average priority/severity of reported bugs related to exception
handling code?

23

4
Study Results

In this chapter we present the results for both the repository analysis and the survey based
on the four research questions of this work. The main goal of the survey we conducted
is to understand developers’ perceptions about exception handling bugs. It is known that
non-trivial systems usually have bugs that are difficult to find, stemming from complex
control flow and overly general catch blocks [RM03], and from I/O operations [ZE12].
However, even though the perceptions of developers about exception handling in general
have been studied, at least on a small scale [SGH10], to the best of our knowledge there
are no studies that attempt to understand how developers regard exception handling bugs.

We had 154 responses to the survey. Respondents had, on average, between 7 and
10 years of software development experience (question 1) as we can see in Table 4.1.
Most are currently working on medium-sized projects ranging between 50 and 100KLoC
(question 2), though more than 40% work on large projects with more than 100KLoC
as we can see in Table 4.2. 98.70% of the survey respondents are Java programmers,
61.69% are JavaScript programmers, and 38.31% are C++ programmers (question 3).
More than 66% of the respondents have worked professionally with at least three pro-
gramming languages (mean of 3.29) as we can see in Table 4.3.

Table 4.1 For how long have you been a Java developer?
Less than 2 years 7.14%
2 to 5 years 20.78%
5 to 7 years 14.94%
7 to 10 years 20.13%
More than 10 years 37.01%

The main goal of the repository analysis is to discover the main causes of real excep-
tion handling bugs. As presented in Section 3.2, we found only 92 exception handling

24

4.1. RQ1: DO ORGANIZATIONS AND DEVELOPERS TAKE EXCEPTION
HANDLING INTO ACCOUNT?

Table 4.2 What is the approximate size of the project you are currently working on?
Less than 20K LOC 24.03%
20K to 50K LOC 20.13%
50K to 100K LOC 13.64%
100K to 200K LOC 9.09%
More than 200K LOC 33.12%

Table 4.3 Which programming languages have you professionally worked with?
Java 98.70%
Javascript 61.69%
C++ 38.31%
C 32.47%
C 30.52%
PHP 22.73%
Python 15.58%
Perl 13.64%
Ruby 9.74%
Objective-C 6.49%

bugs in Eclipse and 128 in Tomcat. The remainder of this chapter is organized as fol-
lows: in Section 4.1, we present the results for the RQ1: "Do organizations and devel-
opers take exception handling into account". Section 4.2 discuss about the RQ2: "How
commonplace are exception handling bugs?", Section 4.3 about RQ3: "Are exception
handling bugs harder to fix than other bugs?". And finally, Section 4.4 shows results for
RQ4: "What are the main causes of exception handling bugs?". In Section 4.5 we make
a discussion of all the results and in Section 4.6 we present the threats to the validity of
this work.

4.1 RQ1: Do organizations and developers take excep-
tion handling into account?

With RQ1 we are interested in understanding how developers and organizations deal
with exception handling. We want to know if they take it into account in all phases of
the development process. In this section we present the results for RQ1. We also make
considerations and compare the results from the survey and the repository analysis. In
Section 4.1.1 we present the results from the survey and in Section 4.1.2 we present the
results from the repository analysis.

25

4.1. RQ1: DO ORGANIZATIONS AND DEVELOPERS TAKE EXCEPTION
HANDLING INTO ACCOUNT?

4.1.1 Survey

The survey included five questions whose goal was to determine whether developers
worry about exception handling when they are not directly implementing the system,
e.g., designing, testing, etc. Three of the questions are listed below:

• Question 4. In the design phase of your projects, what is the importance given to
the documentation of exception handling?

• Question 5. Are there any specifications, documented policies or standards that
are part of your organization’s culture related to the implementation of error han-
dling?

• Question 9. Are there specific tests for the exception handling code in your orga-
nization?

When asked whether "there are any specifications, policies or standards that are part
of your organization’s culture related to the implementation of error handling" (question
5), only 27% of the developers answered yes. In a similar vein, 30% said that there
are specific tests for exception handling code in their organizations (question 9). We
also asked them "in the design phase of your projects, what is the importance given to
the documentation of exception handling?" (question 4). 61% of the respondents said
that none to little importance is given to the documentation of exception handling in the
design phase. Moreover, only 16% said that much to very much importance is given to
exception handling documentation in the design phase.

For the question 5, we left a text field so respondents could enter their own answers.
One interesting spontaneous answer is presented below and it says the same of the an-
tipattern "Log and Throw" from the Section 2.3.3:

"Any exception should be either rethrown or logged, but not both to avoid
duplicate logging of the same exception. If the exception will definitely not
be thrown, the ignoring catch block should include a comment in a specific
format that tells static code analysis tools that this situation is excepted and
no warning should be raised here."

We also asked the questions:

• Question 18. Why do you use exception handling in your projects?

26

4.1. RQ1: DO ORGANIZATIONS AND DEVELOPERS TAKE EXCEPTION
HANDLING INTO ACCOUNT?

• Question 19. What is your opinion about the quality of the code that performs
exception handling in your projects compared to the quality of other parts of the
code?

About 40% of the respondents consider the quality of exception handling code ranges
between good and very good (question 19). Surprisingly, only 14% of the respondents
consider it to be bad or very bad. This result seems to vary with developer experience.
We found that more experienced respondents tend to consider the quality of exception
handling code to be worse. The answers differ significantly when we compare novice
and experienced developers. Student’s T-test produced a p-value of 0.02478.

Inspired by the work of Shah et al. [SGH10], we asked the respondents "why do you
use exception handling in your projects?" (question 18). We provided them with a list
of possible causes of exception handling bugs and gave them the opportunity to suggest
additional ones. Table 4.4 presents the causes more frequently cited by the respondents.

Table 4.4 Why do developers use exception handling?
To create ways to tolerate faults 66%
To improve the quality of a functionality 63%
Importance of functionality 53%
Language requirement 43%
Organizational policies 21%
To debug a specific part of the code 17%
Does not use exception handling 2%

Most of the respondents said that creating ways to tolerate faults and improving the
quality of a functionality are the main reasons it is used. One of the survey respondents
provided a particularly interesting spontaneous answer for this question:

"exception handling is part of code flow - not using exception handling for
some arbitrary reason would be like not using ‘if’ blocks, or not having your
code compile."

Only 17% of the respondents said that they use exception handling for debugging
purposes. In contrast, in the work of Shah et al. [SGH10], which interviewed a group
of 8 novice developers and 7 experts, most of the novice developers claimed to use
exception handling mostly for debugging and because of language requirements. Expert
developers on the other hand, claimed that they use exception handling mainly to convey
understandable failure messages. This latter result seems to be coherent with ours, where

27

4.1. RQ1: DO ORGANIZATIONS AND DEVELOPERS TAKE EXCEPTION
HANDLING INTO ACCOUNT?

most of the respondents claim that they use exception handling to create ways to tolerate
faults or improve the quality of a functionality.

Based on previous work discussing the problems with checked exceptions in Java [CM07],
we expected a larger percentage of respondents to mention language requirement as a
reason for using exceptions. Moreover, only 21% use exception handling because of
organizational policies. This result and the two previously discussed results pertaining
to testing (question 9) and documentation (questions 4 and 5) suggest that organizations
do not pay attention to exception handling, even though developers do. Finally, it is
worth noting that the 3 respondents who claimed not to use exception handling have
only worked professionally with languages that implement exception handling and all
of them have worked professionally with Java.

4.1.2 Repository Analysis

There are already many studies [BvDT06, CCF+09, CM07, SAW12, WN08] which,
based on factual data, show that developers do pay attention to error handling. As-
sessing whether they also pay attention to exception handling bugs is harder, since many
exception handling bugs are probably never uncovered due to insufficient or non-existent
testing procedures. However, we can use bug report information to analyze the bugs that
do get reported. If exception handling bugs and other bugs have similar characteristics,
that would suggest that developers take them in account, at least when they are reported.

Tables 4.5 (a) and 4.5 (b) present a comparison between bug reports pertaining to ex-
ception handling bugs and other bugs in terms of their priorities, severities, resolutions,
status and the presence of attachments for Eclipse and Tomcat.

In Eclipse, exception handling bug reports carry attachments more often than other
bug reports: the percentage is twice as high for exception handling bugs. In Tomcat,
the percentage of bug reports that carry attachments is very close for exception handing
bugs and other bugs. Somewhat intuitively, it is less common for an exception handling
bug to be an enhancement than for other bugs. Besides this, normal is the most common
priority in both systems for exception handling bugs and non-exception handling bugs.

For these two applications, wontfix and worksforme are more common as a resolu-
tion for other bugs than for exception handling bugs: the percentage is twice as high
for non-exception handling bugs. It is also interesting to note that for both systems,
proportionally more exception handling bugs have the fixed resolution than other bugs.
When examined in conjunction, these two results suggest that reported exception han-
dling bugs are ignored less often than other bugs. For severity category, as we can in

28

4.1. RQ1: DO ORGANIZATIONS AND DEVELOPERS TAKE EXCEPTION
HANDLING INTO ACCOUNT?

Table 4.5 Priorities, severities, resolutions, status, and the presence of attachments for exception
handling and non-exception handling bug reports for Eclipse (a) and Tomcat (b).

Exception Other
ECLIPSE Category handling bugs

bugs
Attachment With 49 53.26% 6,799 26.24%

Without 43 46.74% 19,111 73.76%
Priority Blocker 1 1.09% 116 0.45%

Critical 0 0.00% 537 2.07%
Enhancement 2 2.17% 4,440 17.14%
Major 8 8.70% 1,762 6.80%
Minor 4 4.35% 1,463 5.65%
Normal 74 80.43% 17,101 66.00%
Trivial 3 3.26% 491 1.90%

Resolution – (open) 1 1.09% 3,251 12.55%
Fixed 88 96.65% 15.597 60.20%
Wontfix 2 2.17% 3.775 14.57%
Worksforme 1 1.09% 3.287 12.69%

Severity P1 1 1.09% 581 2.24%
P2 5 5.43% 1,60 6.21%
P3 85 92.39% 22,327 86.17%
P4 1 1.09% 899 3.47%
P5 0 0.00% 494 1.91%

Status Assigned 0 0.00% 1,283 4.95%
Closed 0 0.00% 444 1.71%
New 1 1.09% 1,881 7.26%
Reopened 0 0.00% 87 0.34%
Resolved 28 30.43% 13,349 51.52%
Verified 63 68.48% 8,866 34.22%

(a)

Exception Other
TOMCAT Category handling bugs

bugs
Attachment With 38 29.69% 1,901 28.26%

Without 90 70.31% 4,826 71.74%
Priority Blocker 2 1.56% 223 3.31%

Critical 4 3.13% 392 5.83%
Enhancement 10 7.81% 1,055 15.68%
Major 30 23.44% 863 12.83%
Minor 9 7.03% 548 8.15%
Normal 73 57.03% 3,467 51.54%
Regression 0 0.00% 58 0.86%
Trivial 0 0.00% 121 1.80%

Resolution – (open) 3 2.34% 219 3.26%
Fixed 108 84.38% 4,429 65.84%
Later 2 1.56% 141 2.10%
Moved 0 0.00% 1 0.01%
Remind 0 0.00% 21 0.31%
Wontfix 10 7.81% 1,182 17.57%
Worksforme 5 3.91% 734 10.91%

Severity P1 7 5.47% 535 7.95%
P2 52 40.63% 2,834 42.13%
P3 66 51.56% 3,173 47.17%
P4 1 0.78% 59 0.88%
P5 2 1.56% 126 1.87%

Status Assigned 0 0.00% 1 0.01%
Closed 6 4.69% 237 3.52%
Needinfo 1 0.78% 15 0.22%
New 2 1.56% 181 2.69%
Reopened 0 0.00% 22 0.33%
Resolved 119 92.97% 6,268 93,18%
Verified 0 0.00% 3 0.04%

(b)

29

4.2. RQ2: HOW COMMONPLACE ARE EXCEPTION HANDLING BUGS?

Table 4.5, the results are very similar for exception handling and others bugs for both
Eclipse and Tomcat. This would indicate that exception handling bugs usually have the
same severity as others bugs.

The results for status in Tomcat are very similar for exception handling and other
bugs. In Eclipse, there is a slight difference for the status resolved and verified. Pro-
portionally, there are twice as many exception handling bugs verified as other bugs, i.e.
someone did verify the bug after it was resolved.

We perceived a difference in the usage of Bugzilla for Eclipse and Tomcat. Develop-
ers usually used the status verified to mark a bug as fixed and properly working, as it is
the normal life cycle of a bug in Bugzilla. But we did not see this for Tomcat developers.
They usually do not use the status verified. Instead, they usually make comments in the
bug report to say that the bug is fixed and properly working. That would explain why
there are almost no bugs marked as verified for Tomcat.

The remaining categories have similar values for the two kinds of bugs. Since there is
no obvious difference we believe that it is possible to say that developers do pay attention
to documented exception handling bugs at least as much as they do to any other bug.
We can see that in the comment from a respondent (translated from Portuguese from
question 14):

"Of course I already fixed errors inside exception handling blocks, just like I
already fixed errors in all places of the source code. The exception handling
block is just like any other piece of source code".

4.2 RQ2: How commonplace are exception handling bugs?

With RQ2 we want to know how usual exception handling bugs are. In this section
we present the results for RQ2. Additionally, we make considerations and compare the
results from the survey and the repository analysis. In Section 4.2.1 we present the
results from the survey and in Section 4.2.2 we present the results from the repository
analysis.

4.2.1 Survey

To assess how commonplace developers believe exception handling bugs to be, we asked
them:

• Question 10. How often do you find bugs related to exception handling?

30

4.2. RQ2: HOW COMMONPLACE ARE EXCEPTION HANDLING BUGS?

• Question 11. How often do you find bugs that are not related to exception han-
dling?

• Question 12. Estimate the percentage of bugs related to exception handling code
in your projects (estimate a value between 0 and 100%)

The answers are shown in Tables 4.6 and 4.7. We put the answers in a numeric scale
and used Student’s T-test to check whether the answers are significantly different. Ac-
cording to the respondents, exception handling bugs are less frequently found than other
bugs (question 10 and 11). We obtained a p-value of less than 0.0001. We also asked
them to estimate the percentage of exception handling bugs in their projects (question
12). The mean estimate was 9.72% and the median was 5%.

Table 4.6 How often do you find bugs related to exception handling?
Never 1.30%
Rarely 38.96%
Sometimes 53.90%
Most of the time 5.84%
Always 0.00%

Table 4.7 How often do you find bugs that are not related to exception handling?
Never 0.65%
Rarely 4.55%
Sometimes 29.22%
Most of the time 59.74%
Always 5.84%

Additionally, we presented the respondents with the questions:

• Question 6. How often are bugs reported at your organization?

• Question 7. How often are bugs related to exception handling reported at your
organization?

Most of the respondents answered that exception handling bugs are reported rarely
(question 7). Other bugs are reported always (question 6). The answers for the two
questions differ significantly with a p-value of less than 0.0001, this means that in gen-
eral, other kinds of bugs are reported more frequently than exception handling bugs. The
answers for those two questions are shown in Tables 4.8 and 4.9.

31

4.3. RQ3: ARE EXCEPTION HANDLING BUGS HARDER TO FIX THAN OTHER
BUGS?

Table 4.8 How often are bugs reported at your organization?
Never 3.25%
Rarely 7.79%
Sometimes 27.27%
Most of the time 29.22%
Always 32.47%

Table 4.9 How often are bugs related to exception handling reported at your organization?
Never 10.39%
Rarely 31.82%
Sometimes 28.57%
Most of the time 14.94%
Always 14.29%

4.2.2 Repository Analysis

Reported exception handling bugs are rare. As mentioned in Chapter 3, we obtained
92 and 128 exception handling bugs for Eclipse and Tomcat, amounting respectively
to 0.35% and 1.87% of all the bugs. However, according to previous studies [CM07,
WN08], between 5% and 7% of the lines of code of mature Java applications implement
exception handling. Assuming that exception handling code is not more likely to exhibit
bugs than other parts of the code, one would expect the percentage of exception handling
bugs to be proportional to the percentage of exception handling code.

In addition, previous work has provided evidence that exception handling code is
fertile ground for bugs that are difficult to detect [CM07, RM03, WN08]. Hence, we
believe that exception handling bugs are more commonplace than one would assume by
looking at the bug reports. It is also important to mention that in the manual analysis of
the bugs we found several bug reports that did not contain enough information about the
cause of the bug. As such, for those bugs we could not classify as exception handling
bugs, we marked them as non-exception handling. This could be a reason why we found
a very small number of exception handling bugs.

4.3 RQ3: Are exception handling bugs harder to fix than
other bugs?

With RQ3 we are interested in discovering how hard it is to fix exception handling bugs
as compared to non-exception handling bugs. In this section we present the results for

32

4.3. RQ3: ARE EXCEPTION HANDLING BUGS HARDER TO FIX THAN OTHER
BUGS?

RQ3. Additionally, we also make considerations and compare the results from the survey
and the repository analysis. In Section 4.3.1 we present the results from the survey and
in Section 4.3.2 we present the results from the repository analysis.

4.3.1 Survey

Our study revealed that respondents consider exception handling bugs easier to correct
than other types of bugs. We asked them the following three questions related to research
question RQ3:

• Question 16. What is the average level of difficulty to fix bugs related to exception
handling?

• Question 17. What is the average level of difficulty to fix other bugs that are not
related to exception handling?

• Question 20. What is the average priority/severity of reported bugs related to
exception handling code?

Tables 4.10 and 4.11 shows the percentages of the responses for questions 16 and 17.

Table 4.10 What is the average level of difficulty to fix bugs related to exception handling?
Very easy 9.09%
Easy 34.42%
Medium 46.10%
Hard 10.39%
Very hard 0.00%

Table 4.11 What is the average level of difficulty to fix other bugs that are not related to excep-
tion handling?

Very easy 0.00%
Easy 7.14%
Medium 65.58%
Hard 25.97%
Very hard 1.30%

43% of the respondents consider exception handling bugs to be easy or very easy
to be fixed (question 16). In sharp contrast, only 7% of the respondents say the same
about other kinds of bugs (question 17). We employed the T-test to analyze whether the

33

4.3. RQ3: ARE EXCEPTION HANDLING BUGS HARDER TO FIX THAN OTHER
BUGS?

answers for the difficulty in fixing exception handling and other bugs are significantly
different. We found a p-value of less than 0.0001, thus, according to the respondents,
exception handling bugs are easier to fix than other bugs.

We also asked them the following "what is the average priority / severity of reported
bugs related to exception handling code?" (question 20). The responses are shown in
Table 4.12. Most of the respondents answered that the priority / severity of exception
handling bugs is medium. It is interesting to note that novice developers think that the
priority / severity of exception handling bugs is lower than what expert developers think
it is (p-value of 0.0474). This result reinforces the results from [SGH10] which had the
opinion of 15 developers. However our result is based on the opinion of a much larger
number of developers.

Table 4.12 What is the average priority / severity of reported bugs related to exception handling
code?

Very low 5.84%
Low 18.18%
Medium 45.45%
High 25.32%
Very high 5.19%

4.3.2 Repository Analysis

We used two measurements as proxies for the difficulty to fix a bug:

• The number of discussion messages associated with the bug report;

• The time to fix of the bug (measured in days);

Both have been employed with this goal in previous studies [FLSR10]. Table 4.13
present order statistics for these two measurements. We employed the T-test to check
whether the measurements differ significantly between exception handling bugs and
other bugs.

34

4.3. RQ3: ARE EXCEPTION HANDLING BUGS HARDER TO FIX THAN OTHER
BUGS?

Table 4.13 Fix time in days and number of discussion messages for exception handling bugs
and for other bugs.

Fix time Number of discussion messages
Exception Other Exception Other
Handling Bugs Handling Bugs

Bugs Bugs
Eclipse Min. 0 0 2 1

1st Qua. 13 6 5 3
Median 36 38 7 4
Average 184.3 344.6 7.902 6.285
3rd Qua. 111.5 245 10 7
Max. 2,690 4,021 36 206
Var. 271,436.1 450,693.5 26.2 42.3
SD 466.3 671.3 5.1 6.5

Tomcat Min. 0 0 1 1
1st Qua. 45.5 39 2 2
Median 586.5 512 3 3
Average 588.8 637.5 4.07 4.534
3rd Qua. 864 1,092 5 5
Max. 3,257 4,406 15 97
Var. 361,748.1 405,785.0 7.78 20.2
SD 601.4 637.0 2.7 4.4

Figures 4.1 and 4.2 present the Vioplot [HN98] for the fix time and the number of
comments for Eclipse and Tomcat. Violin plots are combinations of box plots and kernel
density plots. It is similar to a box plot, but it also has a rotated kernel density plot to
each side of the box plot. Kernel density plot is a method used to estimate the density of
the data according to a central value (the kernel).

35

4.3. RQ3: ARE EXCEPTION HANDLING BUGS HARDER TO FIX THAN OTHER
BUGS?

Figure 4.1 Graphic of the density of fix time.

Figure 4.2 Graphic of the density of comments.

In Eclipse, the fix time is significantly shorter (p-value < 0.001) for exception han-
dling bugs than for other bugs. However, the number of discussion messages for excep-
tion handling bugs is significantly greater (p-value < 0.001).

In Tomcat, the fix time is not significantly different (p-value = 0.3667). As for the
number of discussion messages, it is smaller for exception handling bugs (p-value =
0.03441).

36

4.4. RQ4: WHAT ARE THE MAIN CAUSES OF EXCEPTION HANDLING BUGS?

Based on these two measurements we could not answer RQ3. In Eclipse we have
shorter fix time for exception handling bugs but on the other hand, the number of dis-
cussion comments is greater. Furthermore, in Tomcat we have a significant difference in
the number of comments. On average, exception handling bugs have fewer comments.
These results lead us to believe that each application has different characteristics on the
difficulty to fix bugs, if analyzing only the fix time and the number of discussion mes-
sages in the bug reports. It is also important to remember that those two proxies are
relative to the level of experience of the developer’s team and also to the amount of
time spent working on the bugs. Finally, this result can be interpreted as evidence that
exception handling bugs are as hard to fix as any other bug.

4.4 RQ4: What are the main causes of exception han-
dling bugs?

In this section we present the results for the fourth research question. We also make
considerations and compare the results of the survey and the repository analysis. In
Section 4.4.1 we present the results from the survey and in Section 4.4.2 we present the
results from the repository analysis.

4.4.1 Survey

To uncover the main causes of exception handling bugs according to the survey respon-
dents, we posed three questions:

• Question 13. Have you ever needed to fix bugs related to exception handling?

• Question 14. If you answered yes to question 13, please describe some of these
situations:

• Question 15. Select below the main causes of bugs related to exception handling
you have ever needed to fix, analyze or have found documented:

Question 15 directly asked them about the main causes. The respondents were al-
lowed to select zero or more causes from a list and could also suggest additional ones.
Table 4.14 summarizes these results. Causes 1 to 4 were given to respondents in the
survey and the remaining ones (causes 5 to 11) were suggested by the respondents
themselves. The most commonly cited causes for exception handling bugs were lack

37

4.4. RQ4: WHAT ARE THE MAIN CAUSES OF EXCEPTION HANDLING BUGS?

of a handler that should exist, no exception thrown in a situation of a known error and
programming error in the catch block.

Table 4.14 What are the main causes of exception handling bugs?
Bug Classification Quantity

1. Lack of a handler that should exist 108
2. No exception thrown in a situation of a known error 85
3. Programming error in the catch block 84
4. Programming error in the finally block 47
5. Exception caught at the wrong level 2
6. catch block where only a finally would be appropriate 1
7. Exception that should not have been thrown 1
8. Wrong encapsulation of exception cause 1
9. Wrong exception thrown 1
10. Lack of a finally block that should exist 1
11. Error in the exception assertion 1

To better understand developers’ perceptions about the causes of exception handling
bugs, we also asked "have you ever needed to fix bugs related to exception handling?"
(question 13) and, pertaining to the this question, "if yes, please describe some of these
situations" (question 14). 83% of the respondents have had to fix an exception handling
bug at some point (question 13). It is also interesting to note a difference in the answers
from novice and expert developers, with a p-value of less than 0.01, expert developers
needed to fix more exception handling bugs than novices. This would be related to the
experience of the expert developers and also their knowledge of the topic.

113 out of 154 survey respondents answered question 14. The answers varied widely
and many of them refer to specific technologies, frameworks and applications. Besides
the typical causes highlighted by Table 4.14, 16 of the respondents also cited excep-
tions caught at the wrong level (14.16% of the answers) and 19 of them cited empty
catch blocks as common causes of exception handling bugs (16.81% of the answers).
Furthermore, 3 of them cited both causes in their answers.

4.4.2 Repository Analysis

Table 4.15 presents the causes of bugs that we identified while examining the bug re-
ports. The table shows the number of bugs having each cause and the percentage of
the number of exception handling bugs with that cause, for each target application. For
Eclipse, the three most common causes of exception handling bugs are (i) exception not
handled (34.78%), (ii) error in the handler (29.35%), and (iii) exception that should not

38

4.4. RQ4: WHAT ARE THE MAIN CAUSES OF EXCEPTION HANDLING BUGS?

be thrown (14.13%). For Tomcat, the most common causes are (i) error in the handler
(37.50%), (ii) exception not handled (19.53%), and (iii) exception not thrown (16.41%).

Table 4.15 Exception handling bug classification according to repository analysis.
Bug Classification Tomcat Bugs Eclipse Bugs

Quantity Percentage Quantity Percentage
Exception not handled 25 19.53% 32 34.78%
Exception not thrown 21 16.41% 5 5.43%
Exception that should not have been thrown 4 3.13% 13 14.13%
Wrong exception thrown 10 7.81% 5 5.43%
Error in the handler 48 37.50% 27 29.35%
Error in the finally block 1 0.78% 4 4.35%
General catch block 2 1.56% 1 1.09%
Inconsistency between source code and API 0 0.0% 3 3.26%
Empty catch block 1 0.78% 1 1.09%
Error in the definition of exception class 0 0.0% 1 1.09%
Invalid or non-existent root cause 16 12.50% 0 0.0%

Figure 4.3 shows an example of exception not handled and Figure 4.4 shows an
example of error in the handler of Eclipse. Figure 4.5 shows an example of exception
that should not be thrown and Figure 4.6 shows an example of exception not thrown of
Tomcat.

///////////////// ORIGINAL CODE ///////////////////
classFile.completeCodeAttribute(codeAttributeOffset);
///////////////// PATCH CODE ///////////////////
try {

classFile.completeCodeAttribute(codeAttributeOffset);
} catch(NegativeArraySizeException e) {

throw new AbortMethod(this.scope.
referenceCompilationUnit().compilationResult, null);

}

Figure 4.3 An example of "exception not handled" from Eclipse - bug ID 298250.

39

4.4. RQ4: WHAT ARE THE MAIN CAUSES OF EXCEPTION HANDLING BUGS?

///////////////// ORIGINAL CODE ///////////////////

} catch (BadLocationException e) {

} catch (BadLocationException e) {

}

///////////////// PATCH CODE ///////////////////

} catch (BadLocationException e) {

throw Changes.asCoreException(e);

}

Figure 4.4 An example of "error in the handler" from Eclipse - bug ID 170237.

///////////////// ORIGINAL CODE ///////////////////

public Principal authenticate(String username,

String credentials) {

...

// If not a "Socket closed." error then rethrow.

if (e.getMessage().indexOf("Socket closed") < 0)

throw(e);

///////////////// PATCH CODE ///////////////////

public Principal authenticate(String username,

String credentials) {

// if code removed

Figure 4.5 An example of "exception that should not be thrown" from Tomcat - bug ID 18698.

40

4.4. RQ4: WHAT ARE THE MAIN CAUSES OF EXCEPTION HANDLING BUGS?

///////////////// ORIGINAL CODE ///////////////////

public void include(String relativeUrlPath)

throws ServletException, IOException {

///////////////// PATCH CODE ///////////////////

public void include(String relativeUrlPath)

throws ServletException, IOException {

...

if (resourceStream == null) {

throw new IllegalArgumentException

(‘‘Included resource not found: ’’

+ relativeUrlPath);

}

Figure 4.6 An example of "exception not thrown" from Tomcat - bug ID 8200.

It is interesting to note the differences between the two systems. Exception not
thrown is a common cause of exception handling bugs in Tomcat but not in Eclipse.
On the other hand, exception that should not have been thrown, the third most common
cause of exception handling bugs in Eclipse, does not rank among the top 5 most com-
mon causes in Tomcat. Furthermore, invalid or non-existent root cause is the originator
of 12% of the exception handling bugs in Tomcat but no bugs in Eclipse.

Another interesting point is the rareness of empty catch blocks as causes of bugs:
only one for each application. Empty catch blocks are in widespread use in large-
scale, mature applications [CM07, RS03]. However, developers seem to believe that they
create many problems [McC06, MS02, Nel09, RS03, Sal07]. Firstly, because they might
make bugs subtler. Since empty catch blocks ignore exceptions, the problems that the
ignored exceptions signalize can only be detected by indirect means. Secondly, because
they hinder debugging. Since there is no stack trace and, in fact, no exception, finding
the root cause of the problem becomes particularly difficult. Thirdly, because they hurt
maintainability. Developers often use empty catch blocks in situations where they are
certain that a given exception cannot be thrown. Therefore, the empty catch block
will never be reached. In our study we have seen comments in the source code stating
precisely that. However, as a consequence of software maintenance, the preconditions
that guaranteed the impossibility of the exception being thrown might be violated, thus
introducing subtle bugs. The well-known problems that empty catch blocks can create
are in stark contrast to the small number of bugs that have them as a cause.

41

4.5. DISCUSSION

A similar case can be made about catch clauses for general exception types, such as
Throwable or Exception. There is convincing evidence [RM03, CRG+08, FR07]
that they are often sources of bugs. However, overall, we only found 3 bug reports with
this cause. In addition, one of them did not really describe an actual bug. It focused
instead of highlighting the potential problems of overly general catch clauses.

Even though empty catch blocks are a well-known bad smell, we found 10 bugs
whose patches use empty catch blocks. Figures 4.7 and 4.8 show one example from
Eclipse and one from Tocmat, respectively. Not every bug points to its corresponding
patch. Hence, it is possible that even more patches for exception handling bugs use
empty catch blocks.

try {
javadocContents =

extractJavadoc(declaringType, javadocContents);
} catch(JavaModelException e) {
// ignore

}

Figure 4.7 A empty catch block patch for Eclipse, bug ID 139160.

try {
session.expire();

} catch (Throwable t) {
;

}

Figure 4.8 A empty catch block patch for Tomcat, bug ID 24368.

4.5 Discussion

Contrasting the actual bugs that we identified in the repositories with the bugs that de-
velopers have had to fix, according to their answers to one of the survey questions,
we notice that a number of problems have rarely been documented in bug reports.
Some of these problems appear in a number answers, such as exceptions caught at
the wrong place. Moreover, there is ample opportunity for problems stemming from
inadvertently caught exceptions to manifest. There are many catch blocks for gen-
eral types, such as Exception and Throwable, in the two target applications of

42

4.5. DISCUSSION

the study. For example, the trunk version of Tomcat 7.0 in April 24th 2013 had 280
catch(Throwable...) blocks and more than 520 catch(Exception...)

blocks. Previous studies [CRG+08, RM03] using static analysis tools have shown that
general catch blocks do capture exceptions they were not intended to in practice.

In summary: (i) developers claim to have fixed bugs with causes that rarely appear
in bug reports; (ii) bugs with these causes are known to be hard to find without proper
testing, e.g., exceptions caught at the wrong place; and (iii) exception handling code is
rarely tested. These hard-to-find bugs manifest only indirectly and tracking the cause
is difficult. One of the survey respondents summarized this situation when asked "have
you ever needed to fix bugs related to exception handling? (if yes, please describe some
of these situations)" (question 14):

"Exceptions caught too early allowing the program to proceed with invalid
data, e.g., returning null from a method instead of throwing a meaningful
exception. This usually causes another related exception soon, but in hairy
cases may cause data corruption and other irregularities".

There are diametrically different opinions on the subject of empty catch blocks.
As discussed in Section 4.4, a number of developers seem to believe that empty catch
blocks are a bad thing. Out of the 113 survey respondents who described exception
handling bugs they had to fix in the past, 19 claimed to have fixed bugs where empty
catch blocks were either a potential or actual causes, as we can see in the comment of
one respondent (translated from Portuguese from question 14):

"Many developers consider it is normal to ’swallow’ exceptions, so that
the system does not show errors to the user. However, the system behavior
becomes unpredictable. Swallowed exceptions are the worst problem that I
used to find in the systems."

However, examination of the bug reports for the two target applications revealed only
two bugs due to empty catch clauses. In addition, some survey respondents seem to
radically disagree:

"I’m also an Eclipse committer (on Platform/UI). On 4.2 we’ve changed
how parts (e.g., editors and views) are rendered. Our new system silently
swallows otherwise-uncaught exceptions. Tracing what happens when an
EditorPart or ViewPart throw an uncaught exception is a teensy bit annoy-
ing."

43

4.5. DISCUSSION

The citation above shows that the respondent does not want to know about problems in
some parts of the system. Furthermore, somewhat surprisingly, examining the patches
for the 87 bug reports that also include the corresponding patches as attachment, we
discovered that 10 employed empty catch blocks. In addition, empty catch blocks are
often used in conjunction with overly general catch clauses. For example, in Tomcat,
there are 280 catch clauses that capture Throwable. Among them, 55 have the
following implementation:

if (t instanceof ThreadDeath) {
throw (ThreadDeath) t;

}
if (t instanceof VirtualMachineError) {

throw (VirtualMachineError) t;
}
// All other instances of Throwable
// will be silently swallowed

Figure 4.9 The implementation of many handlers for Throwable in Tomcat.

This implementation means that, technically, the catch block is not empty. However,
in practice, any exception (and most errors) caught by a catch block with this imple-
mentation will be simply ignored, as if it were empty. The comment at the end of the
code snippet makes it clear that this behavior is intentional. This approach is used mostly
in situations where it is difficult to know what to do with an exception, for example, in a
finally block responsible for freeing resources. It is surprising, however, to see that
the error is not even logged.

The respondents of the survey and the bug reports did not agree on the difficulty to
fix exception handling bugs. The former believe that these bugs are easier to fix than
other bugs. However, analysis of the repository data has shown that there is no obvious
answer. Exception handling bugs seem to be as difficult to fix as other bugs. Whether
this false sense of security has any impact on the overall system reliability is something
to be discovered in future work.

According to the respondents of the survey, the average estimated percentage of ex-
ception handling bugs is 9.72%. But from the repository analysis we found only 1.87%
of exception handling bugs for Tomcat and 0.35% for Eclipse. Even considering conser-
vative estimates for the amount of exception handling code in a system, e.g., 3% of the
LoC [CM07], the number of exception handling bugs does not seem to be proportional
to the amount of exception handling code. There are 3 potential causes for this, in the

44

4.5. DISCUSSION

context of the two target applications: (i) exception handling code is less bug-prone;
(ii) exception handling bugs are not reported; or (iii) many exception handling bugs go
undetected. As discussed earlier in this section, there is evidence that the latter is more
probable.

4.5.1 Exception Handling Bug Classification

In this section we present the exception handling bug classification that we compiled
from both results from the survey and the repository analysis. Firstly, we need to explain
how we merged both classifications because there are some classifications which are the
same. Table 4.16 shows the terms that mean the same classification. It presents which
terms from the survey classification are equal to the classification from the repository
analysis.

Table 4.16 Merged classification terms.
Survey Classification Classification from Repository Analysis

Lack of a handler that should exist Exception not handled
No exception thrown in a situation of a known error Exception not thrown
Programming error in the catch block Error in the handler
Programming error in the finally block Error in the clean-up action
Wrong encapsulation of exception cause Invalid or non-existent root cause

Section 4.4 provides a comprehensive list of causes for exception handling bugs. In
summary, our final exception handling bug classification compiled the terms from the
survey and the analysis of the bug repository. Table 4.17 presents a comprehensive clas-
sification. This list of causes for exception handling bugs can assist testers in devising
thorough test suites and can also be used as a checklist to guide code inspections.

45

4.5. DISCUSSION

Table 4.17 Comprehensive classification of exception handling bugs.

Lack of a handler that should exist
Exception not thrown
Error in the handler
Error in the clean-up action
Exception caught at the wrong level
General catch block
Wrong exception thrown
Exception that should not have been thrown
Wrong encapsulation of exception cause
Lack of a finally block that should exist
Error in the exception assertion
Inconsistency between source code and API
Empty catch block
Error in the definition of exception class
catch block where only a finally would be appropriate

Below we explain each exception handling bug classification.

• Lack of a handler that should exist: This is the case where an exception should
be handled and it is not;

• Exception not thrown: This is the case where an exception should be thrown and
it is not;

• Error in the handler: This is the case where there is an explicit error in the
exception handler, in Java it is in the catch block;

• Error in the clean-up action: This is the case where there is an explicit error in
the exception clean-up action, in Java it is in the finally block;

• Exception caught at the wrong level: This is the case where an exception is
caught unintentionally. The exception is being handled by the wrong handler;

• General catch block: This is a subcase of Exception caught at the wrong
level. It is the case where the handler catches a general exception, such as Exception
or Throwable, instead of the specific one;

• Wrong exception thrown: This is the case where a wrong exception is thrown
instead of the correct one;

46

4.6. THREATS TO VALIDITY

• Exception that should not have been thrown: This is the case where an excep-
tion is thrown in a situation where it should not have been;

• Wrong encapsulation of exception cause: This is the case where an exception
is not encapsuled correctly so it loses the original exception root cause before it is
handled;

• Lack of a finally block that should exist: This is the case where there is no
finally block in a situation where one should exist;

• Error in the exception assertion: This is the case where there is a problem with
the exception assertion. It means there is an error in the checking for errors (as-
sertion) in the exception handling code;

• Inconsistency between source code and API: This is the case where there is a
discrepancy between the source code and the API: the source code is not following
the API requirements or the API is not up-to-date with the software functionality;

• Empty catch block: This is the case where the handler is empty swallowing the
exception;

• Error in the definition of exception class: This is the case where a defini-
tion of exception class is not done correctly. For example, in a situation where
"SomeException extends Error" when the correct statement is "SomeException
extends RuntimeException";

• catch block where only a finally would be appropriate: This is the case
where a catch block is used instead of a finally block when the latter should
be more appropriate;

4.6 Threats to Validity

In this section we present the threats to the validity of this work. We identified three
kinds of threats to the validity: internal, external and construct, all of which are discussed
below.

Internal Validity. One threat to internal validity is the search string that we em-
ployed. We tried to cover well-known terms that appear in exception handling litera-
ture [Goo75, Cri79, AL90]. Moreover, the search string included terms that are associ-
ated with the Java language, since we analyzed the bug repositories of two applications

47

4.6. THREATS TO VALIDITY

written in Java. As a consequence, the search string is more specific than that employed
in a previous study [SAW12].

There were several bug reports that did not contain enough information to identify
whether they referred to exception handling bugs. In some cases, we could mitigate
the problem by studying the attached patches and by analyzing the source code and the
documentation of the system. In general, however, bugs that did not contain enough
information were classified as non-exception handling bugs.

Unlike previous work [SAW12], we did not rely solely on the search string to identify
exception handing bugs. We have manually analyzed the more than 2,000 bug reports
that the search produced as results. This manual inspection revealed that the search
returns a large number of false positives, most of them mention exception but not excep-
tion handling bugs. Because the inspection was manual, two kinds of mistake may have
been committed: (i) a regular bug being classified as an exception handling bug; and
(ii) an exception handling bug not being classified as such. To reduce the chance of this
occurring, the two authors examined many of the bug reports independently. Moreover,
a third examiner also analyzed many of the bug reports, which were later reviewed by
the two authors.

External Validity. The threats to external validity are related to the generalizability
of the study results. The first of these threats is that we have only analyzed bug reports
referring to two applications, Eclipse and Tomcat. Moreover, for Eclipse, we only ex-
amined bug reports associated with two (large-scale) components: Core and UI. The
conflicting results discussed in this chapter highlight this point: software development
culture, community, and technical characteristics of each project have a strong impact
on the results of a study such as this one. In a similar vein, since the two applications are
written in the Java language, it would not make sense to extrapolate our findings to ap-
plications written in other languages. Further studies are necessary to establish whether
some of the findings of our study, e.g., that bugs stemming from overly general catch
blocks are rarely reported, apply to Java development in general.

Our survey involved 154 respondents. This number is small and limits the gener-
alizability of the results. Nonetheless, respondents of the survey came from different
professional and cultural backgrounds. Furthermore, the largest study to date on the
viewpoints of developers about exception handling [SGH10] involved only 15 respon-
dents (they were interviewed instead of responding to a survey). Therefore, from a
comprehensiveness standpoint, we can say that our study is an improvement over the
current state-of-the-art.

48

4.6. THREATS TO VALIDITY

Another threat is the proportionally low number of exception handling bugs found
in each system. Even though we analyzed more than 200 bugs, this number is small
in comparison to the overall number of bug reports in the repositories of Eclipse and
Tomcat. We believe that this is not a fault of our study. Instead, as reinforced by the re-
sults of the survey, developers and organizations seem to pay less attention to exception
handling bugs: they document less and test the system less for their occurrence. More-
over, as highlighted by previous work on exception handing [CM07, CRG+08, RM03]
and our own results presented in this chapter, many exception handling bugs are simply
never identified by developers and testers.

Construct Validity. The threats to construct validity are related to how properly a
measurement actually measures the concept being studied. One threat to the validity of
our study is that our survey was conducted with an online, self-administered question-
naire. In the instructions section of this questionnaire we tried to explain the definition
of exception handling bug to the respondents. Nonetheless, it is possible that they may
have misunderstood this definition and answered the questions based on a different un-
derstanding of the meaning of exception handling bug. We tried to reduce the probability
of occurrence by providing some simple examples in the instructions. Moreover, some
of the questions include specific information that points out some of the kinds of bugs
that we consider to be exception handling bugs (see Appendix A).

Additionally, our questionnaire might not have covered all questions that could have
been asked of the respondents. Nonetheless, the final questionnaire was the result of
several discussions between the authors (one of whom is a specialist in exception han-
dling) and with a number of software developers and academics. Moreover, we ran at
least two small pilot studies before finally making the questionnaire public.

49

5
Conclusion

In this work we presented an exploratory study on exception handling bugs based on two
complementary approaches: an analysis of the bug repositories of Eclipse and Tomcat
and a survey conducted with developers with some experience in Java. With the survey
we could get personal perceptions from developers about exception handling and excep-
tion handling bugs and compare their answers to data about actual exception handling
bugs. Our study has shown that there are many contradictions pertaining to exception
handling. We summarize these contradictions and the results for the four research ques-
tions of our work below.

For RQ1: "do organizations and developers take exception handling into account?",
we perceived from survey’s answers that usually organizations do not take exception
handling into account however developers seem to do, according to the data observed
from the repository analysis. For RQ2: "how commonplace are exception handling
bugs?", we could note that exception handling bugs are less frequent than others kind of
bugs according to the survey and much less frequent according to repository analysis.
For RQ3: "are exception handling bugs harder to fix than other bugs?", we verified
that developers assume that fixing exception handling bugs is easier than fixing other
bugs, however the repository data suggests that this is not the case. For RQ4: "what
are the main causes of exception handling bugs?", we verified from both repository
analysis and the survey that the most common causes of exception handling bugs are:
lack of a handler that should exist, no exception thrown in a situation of a known error,
programming error in the catch block, and exception that should not have been thrown.

Furthermore, many developers seem to think that empty catch blocks cause ex-
ception handling bugs. Nevertheless, they are often used, even in patches for exception
handling bugs. Additionally, developers claim that they use exception handling mainly
to improve the quality of the systems they produce. Notwithstanding, exception handling

50

5.1. RELATED WORK

code is seldom tested or documented and there are usually no organizational policies to
guide its development. In addition to this, some causes for bugs that developers consider
to be commonplace are rarely found in bug reports.

We also presented a comprehensive classification of exception handling bugs based
on the study results. The results of this study emphasize that the views of developers
and organizations about exception handling bugs are conflicting. To improve the quality
of software systems these views must be reconciled so that exception handling code
can receive more attention. The presented classification of exception handling bugs can
provide assistance in this task, e.g., by working as a checklist for code inspections or a
guide in the design of test cases.

5.1 Related Work

Cristian [Cri89] was the first to emphasize that exception handling code is the least
documented, tested, and understood part of source code of an application. Since then,
a number of researchers have conducted studies to investigate the extent to which this
statement is true and to understand its implications.

To the best of our knowledge, the two studies that are most closely related to our
own are the one by Marinescu [Mar11] and the one by Sawadpong et al. [SAW12].

Marinescu [Mar11] conducted an empirical study targeting three releases of Eclipse
with the goal of analyzing the defect-proneness of classes that use exception handling.
The study inspected both the source code and the bug repository for the versions of
Eclipse and associated the reported bugs with classes that they mention. The analysis
revealed that indeed classes that throw or handle exceptions are more defect-prone than
others classes that do not throw and do not handle exceptions. However, this study did
not take into account the causes of the bugs, and so there is no way to conclude the reason
of the defects. It only says that classes that throw or handle exceptions have a higher
probability of having defects than other classes. Her study did not attempt to distinguish
exception handling and non-exception handling bugs. We looked for exception handling
bugs documented by developers and we did not analyze the source code of Eclipse and
Tomcat like Marinescu’s work, but we complemented the repository analysis with the
survey.

Sawadpong et al. [SAW12] performed the first study on exception handling bugs by
looking at bug reports. Their study aimed to determine whether the usage of exception
handling is relatively risky by analyzing the defect densities of exception handling code

51

5.1. RELATED WORK

and the overall source code. The source code and bug repository of six Eclipse releases
were analyzed. In the bug repository, the study looked specifically for exception han-
dling bugs, performing a search using the keywords "exception", "throw", and "threw".
The main finding of the study is that exception handling defect density of exception
handling constructs is approximately three times higher than overall defect density. We
believe that the definition of exception handling bug ("defect" in their study) employed
is not appropriate. It assumes that every bug report returned by the repository search per-
tains to exception handling. The problem with this assumption is that it confuses bugs
whose manifestation is an exception being thrown with bugs whose cause is associated
in some way with exceptions (as we discussed in Chapter 3). One would hardly, if ever,
classify a typical division by zero or invalid cast as an exception handling bug. As stated
in the last section of their paper, "Our goal was to determine whether using exception
handling is risky...". However, to verify if using exception handling is risky, the study
accounted for bugs that do not involve the use of exception handling.

A number of other studies have attempted to understand developer habits pertaining
to exception handling. Shah et al. [SGH10] conducted a study with 8 novices (2 years
of development experience on average) and 7 experts (5+ years of professional software
development) from the software industry to understand their viewpoints on exception
handling. They conducted semi-structured interviews with developers and the results
show that novice developers neglect exception handling until there is an error or until
they are forced to address due to language requirements. Furthermore, they do not like
being forced by the language to use exception handling constructs and most of them use
exception handling only for debugging purposes. In contrast, the experienced developers
think that exception handling is a very important part of development. In our survey we
found some interesting results as we discussed in Chapter 4. It is important to stress that
the work of Shah et al. [SGH10] did not focus on exception handling bugs.

Cabral and Marques [CM07] examined 32 systems written in Java (including Eclipse
and Tomcat) and C#. Their objective was to understand how developers use exception
handling mechanisms by manual examination of the exception handling code of those
systems. They discovered that the total amount of exception handling code is less than
expected, even in Java programs that force developers to handle checked exceptions.
For example, Java Stand-Alone applications (this includes Eclipse) have only 3.11% of
exception handling code. Server applications reach 7% of exception handling code. An-
other interesting result is that most of the time the handlers are empty or exclusively
dedicated to logging, re-throwing the caught exception, or exiting the method or pro-

52

5.1. RELATED WORK

gram. In contrast, we did not analyze the source code. Instead, we examined bug report
data from Eclipse and Tomcat and conducted a survey.

Another previous study that investigated the use of exception mechanisms in Java
applications was conducted by Reimer and Srinivasan [RS03]. They analyzed 7 applica-
tions and identified various antipatterns of exception handling usage. According to them,
improper usage of exception handling reduces the maintainability of these systems. The
antipatterns they found were: (i) exception being ignored with empty catch blocks,
(ii) single catch block for multiple exceptions, (iii) exceptions not being handled at
appropriate level, and (iv) logging verbosity in catch blocks. In our work we found
some of these antipatterns as the causes of the bugs and additionally, to our surprise, as
patches for some bugs as we discussed in Chapter 4.

Coelho and colleagues [CRvS+08] created a bug pattern catalog for exception han-
dling based on a previous study [CRG+08] targeting three applications with both Java
and AspectJ versions available. This bug pattern catalog focuses on aspect-oriented
languages. Each bug pattern comprises the bug symptoms, causes, a code example,
cures, and prevention. According to the authors the most common causes of exception
handling bugs in aspect-oriented programs are exceptions thrown and not caught and
exceptions caught at the wrong level. Differently from our work, Coelho’s work focused
on aspect-oriented programs. Moreover, they focused on identifying bugs in the source
code, whereas our study analyzes bugs that developers have reported.

Robillard and Murphy [RM03] focused on the control flow aspects of exceptions.
They developed a static analysis tool that can show the paths that exceptions traverse
from the methods that throw them to the ones the handle them, if any. They then em-
ployed the tool to identify bugs in three target systems. The problems identified by the
tool stemmed from uncaught exceptions that should be captured and from exceptions
caught accidentally, often as a consequence of overly general catch blocks.

More recently, Zhang and Elbaum [ZE12] studied bug reports of five popular open
source applications for the Android phone platform. They used the keywords "excep-
tion", "throw", and "catch", in the search and obtained 282 bugs. They discovered that
almost a third of the bugs that led to code fixes were caused by poor implementation of
exception handling constructs. They also introduced an approach aimed at amplifying
existing tests to validate exception handling code associated with external resources.

Neither of the two aforementioned studies analyze issues such as whether exception
handling bugs are easier to fix. Moreover, only the studies of Coelho et al. [CRG+08]
and Robillard and Murphy [RM03] attempt to analyze the causes of exception handling

53

5.2. FUTURE WORK

bugs. Nevertheless, since both employ static exception flow analysis tools, they are only
able to identify bug causes related to exception control flow. These studies have also not
accounted for the perceptions of developers about exception handling bugs.

5.2 Future Work

For future work we intend to expand this study by analyzing other kinds of data. For
example, combining bug report data with the information stored in version control sys-
tems can help us to more precisely pinpoint the impact of a bug and its fix. We also
plan to conduct interviews with developers since very useful information in our study
came from spontaneous answers provided by the respondents of the survey. Through
interviews we can get personal information we cannot get from the survey.

It is common for developers to employ empty catch blocks in circumstances where
the implementation of the system guarantees that the exception will not be thrown. How-
ever, software maintenance can break those guarantees. Tools capable of assisting devel-
opers in identifying whether that has occurred would be useful. Furthermore, we need
better support to help developers decide what to do in the presence of exceptions. If not,
they will continue to use empty catch blocks as if they were a good solution. We be-
lieve that the development of recommendation systems capable of suggesting exception
handling strategies based on the existing code base is a goal worth pursuing [BGM12].
Finally, the empirical results presented in this work, in particular the list of causes of
exception handling bugs, can help future research in prediction and localization of ex-
ception handling bugs.

54

References

[AL90] T. Anderson and P. A. Lee. Fault Tolerance: Principles and Practice.
Springer, 2nd edition, 1990.

[BGM12] Eiji Adachi Barbosa, Alessandro Garcia, and Mira Mezini. A recommen-
dation system for exception handling code. In Proceedings of ICSE’2012
Workshop on Exception Handling, June 2012.

[Bla82] Andrew P. Black. Exception Handling: The Case Against. PhD thesis,
University of Oxford, January 1982.

[BvDT06] Magiel Bruntink, Arie van Deursen, and Tom Tourwé. Discovering faults in
idiom-based exception handling. In Proceedings of the 28th International
Conference on Software Engineering, pages 242–251, May 2006.

[CCF+09] Fernando Castor, Nélio Cacho, Eduardo Figueiredo, Alessandro Garcia,
Cecília M. F. Rubira, Jefferson Silva de Amorim, and Hítalo Oliveira
da Silva. On the modularization and reuse of exception handling with as-
pects. Softw., Pract. Exper., 39(17):1377–1417, 2009.

[CM07] Bruno Cabral and Paulo Marques. Exception handling: a field study in
java and .net. In Proceedings of the 21st European conference on Object-
Oriented Programming, pages 151–175. Springer-Verlag, 2007.

[CRG+08] Roberta Coelho, Awais Rashid, Alessandro Garcia, Fabiano Cutigi Ferrari,
Nélio Cacho, Uirá Kulesza, Arndt von Staa, and Carlos José Pereira de Lu-
cena. Assessing the impact of aspects on exception flows: An exploratory
study. In Proceedings of the 22nd European Conference Object-Oriented
Programming, pages 207–234, Paphos, Cyprus, Julho 2008.

[Cri79] Flaviu Cristian. A recovery mechanism for modular software. In Proceed-
ings of the 4th ICSE, pages 42–51, 1979.

[Cri89] Flaviu Cristian. Exception handling. In Dependability of Resilient Com-
puters, pages 68–97. Blackwell Science, 1989.

[CRvS+08] Roberta Coelho, Awais Rashid, Arndt von Staa, James Noble, Uirá
Kulesza, and Carlos Lucena. A catalogue of bug patterns for exception

55

REFERENCES

handling in aspect-oriented programs. In Proceedings of the 15th Con-
ference on Pattern Languages of Programs, PLoP ’08, pages 23:1–23:13,
2008.

[CvSK+11] Roberta Coelho, Arndt von Staa, Uirá Kulesza, Awais Rashid, and Carlos
Lucena. Unveiling and taming liabilities of aspects in the presence of ex-
ceptions: A static analysis based approach. Inf. Sci., 181(13):2700–2720,
July 2011.

[FLSR10] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. A study
of the internal and external effects of concurrency bugs. In Proceedings of
the 2010 IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 221–230, June/July 2010.

[FR07] Chen Fu and Barbara G. Ryder. Exception-chain analysis: Revealing ex-
ception handling architecture in java server applications. In Proceedings
of the 29th International Conference on Software Engineering, pages 230–
239, May 2007.

[GFC+09] Robert M Groves, Floyd J Fowler, Mick P Couper, James M Lepkowski,
Eleanor Singer, and Roger Tourangeau. Survey Methodology. Wiley, 2nd
edition, 2009.

[Goo75] J. B. Goodenough. Exception handling: Issues and a proposed notation.
Communications of the ACM, 18(12):683–696, December 1975.

[GRRX01] Alessandro F. Garcia, Cecília M. F. Rubira, Alexander B. Romanovsky, and
Jie Xu. A comparative study of exception handling mechanisms for build-
ing dependable object-oriented software. Journal of Systems and Software,
59(2):197–222, 2001.

[HN98] Jerry L. Hintze and Ray D. Nelson. Violin plots: A box plot-density trace
synergism. The American Statistician, 52(2):181–184, May 1998.

[htt13a] http://www.bugzilla.org. The bugzilla guide - 4.2.6 release, May 2013. Ad-
dress: http://www.bugzilla.org/docs/4.2/en/html/lifecycle.html – Last ac-
cess: May 10th 2013.

56

REFERENCES

[htt13b] http://www.javatpoint.com. Exception handling in java, May 2013. Ad-
dress: http://www.javatpoint.com/exception-handling-and-checked-and-
unchecked-exception – Last access: May 10th 2013.

[KCM07] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and
taxonomy of approaches for mining software repositories in the context of
software evolution. J. Softw. Maint. Evol., 19(2):77–131, March 2007.

[KP08] Barbara Kitchenham and Shari L. Pfleeger. Personal opinion surveys. In
Forrest Shull, Janice Singer, and Dag I. K. Sjoberg, editors, Guide to Ad-
vanced Empirical Software Engineering, pages 63–92, 2008.

[LS07] Wei Li and Raed Shatnawi. An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution. J.
Syst. Softw., 80(7):1120–1128, July 2007.

[Mar11] Cristina Marinescu. Are the classes that use exceptions defect prone? In
Proceedings of the 12th International Workshop on Principles of Software
Evolution, pages 56–60, September 2011.

[McC06] Tim McCune. Exception-handling antipatterns, 2006. Address:
http://today.java.net/pub/a/today/2006/04/06/ exception-handling-
antipatterns.html – Last access: May 10th 2013.

[MR06] Douglas C. Montgomery and George C. Runger. Applied Statistics and
Probability for Engineers. Wiley, 2th edition, 2006.

[MS02] Andreas Muller and Geoffrey Simmons. Exception handling: Common
problems and best practice with java 1.4. In Proceedings of NetObject
Days’2002, October 2002.

[Nel09] Ian Nelson. Empty catch blocks, June 2009.
http://www.ianfnelson.com/blog/empty-catch-blocks.

[R93] R, January 1993. http://www.r-project.org/.

[RM03] M. Robillard and G. Murphy. Static analysis to support the evolution of
exception structure in object-oriented systems. ACM Transactions on Soft-
ware Engineering and Methodology, 12(2):191–221, April 2003.

57

REFERENCES

[RS03] Darrel Reimer and Harini Srinivasan. Analysing exception usage in large
java applications. In Proceedings of ECOOP Workshop on Exception Han-
dling in Object-Oriented Systems, pages 10–19, July 2003.

[Sal07] Dustin Sallings. Empty catch blocks are always wrong, June
2007. http://www.rockstarprogrammer.org/post/2007/jun/15/empty-catch-
blocks-are-always-wrong/.

[SAW12] Puntitra Sawadpong, Edward B. Allen, and Byron J. Williams. Exception
handling defects: An empirical study. 9th IEEE International Symposium
on High-Assurance Systems Engineering, pages 90–97, October 2012.

[SCA10] Swarup Kumar Sahoo, John Criswell, and Vikram Adve. An empirical
study of reported bugs in server software with implications for automated
bug diagnosis. In Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering, pages 485–494, May 2010.

[SGH10] H.B. Shah, C. Gorg, and M.J. Harrold. Understanding exception handling:
Viewpoints of novices and experts. Software Engineering, IEEE Transac-
tions on, 36(2):150–161, 2010.

[Som10] Ian Sommerville. Software Engineering 9. Addinson-Wesley, 9th edition,
2010.

[WN08] Westley Weimer and George C. Necula. Exceptional situations and pro-
gram reliability. ACM Trans. Program. Lang. Syst., 30(2):1–51, 2008.

[XRR+] Jie Xu, Brian Randell, Alexander Romanovsky, Cecilia M F Rubira,
Robert J Stroud, and Zhixue Wu. Fault tolerance in concurrent object-
oriented software through coordinated error recovery.

[ZE12] Pingyu Zhang and S. Elbaum. Amplifying tests to validate exception han-
dling code. In In Proceedings of 34th International Conference on Software
Engineering, pages 595 –605, june 2012.

[ZPZ07] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting de-
fects for eclipse. In Proceedings of the Third International Workshop on
Predictor Models in Software Engineering, 2007.

58

Appendix

59

A
Survey

This Appendix contains the questionnaire used in this study.

Table A.1: Questionnaire about exception handling bugs.

Questionnaire about exception handling bugs
This survey’s purpose is to help identify aspects related to exception
handling bugs (which are caused by code that executes handling instructions):
how frequent these bugs happen, how they are documented and how much time
it takes to correct them. This work is part of the research of a master
program at the Informatics Center of Universidade Federal de Pernambuco
advised by Fernando Castor. All participant’s identification information
will be undisclosed. The estimated time to complete all questions is 15-20
minutes.

To answer this questionnaire please consider the following definition
of "bugs related to exception handling code": the bugs that are
located specifically within the handlers (catch blocks) or the clean-up
action (finally blocks), and also errors arising from any exception that
should be being handled (or thrown) and is not being handled (or thrown),
thus causing an error in the system.

1. For how long have you been a Java developer?

[] Less than 2 years
[] 2 to 5 years

Continued on next page

60

Table A.1 – continued from previous page
Questionnaire about exception handling bugs

[] 5 to 7 years
[] 7 to 10 years
[] More than 10 years

2. What is the approximate size of the project you are currently working
on (LoC estimate)? (in case you are not working, please consider your last
project you worked on)

[] Less than 20K LOC
[] 20K to 50K LOC
[] 50K to 100K LOC
[] 100K to 200K LOC
[] More than 200K LOC

3. Which programming languages have professionally worked with?
(you can select more than one answer)

[] JavaScript
[] Ruby
[] Python
[] Java
[] PHP
[] C
[] C++
[] Perl
[] Objective-C
[] C

4. In the design phase of your projects, what is the importance given to
the documentation of exception handling?

[] None
Continued on next page

61

Table A.1 – continued from previous page
Questionnaire about exception handling bugs

[] Little
[] Some
[] A lot
[] The most

5. Are there any specifications, documented policies or standards that
are part of your organization’s culture related to the implementation
of error handling?

[] Yes[] No

5.1. If you answered YES to the previous question, please describe the
policies adopted by your organization:

6. How often are bugs reported at your organization?

[] Never
[] Rarely
[] Sometimes
[] Most of the time
[] Always

7. How often are bugs related to exception handling reported at
your organization?

[] Never
[] Rarely
[] Sometimes
[] Most of the time
[] Always

8. Does your organization use any tool for reporting and keeping
Continued on next page

62

Table A.1 – continued from previous page
Questionnaire about exception handling bugs

track of bugs?

[] Yes[] No

8.1. If you answered YES in the question above, please describe
these tools below:

9. Is there any testing process implemented in your organization?

[] Yes[] No

9.1. If you answered YES to the previous question, please describe this
process below:

10. Are there specific tests for the exception handling code in your
organization?

[] Yes[] No

11. How often do you find bugs related to exception handling?

[] Never
[] Rarely
[] Sometimes
[] Most of the time
[] Always

12. How often do you find bugs that are not related to exception handling?

[] Never
[] Rarely
[] Sometimes

Continued on next page

63

Table A.1 – continued from previous page
Questionnaire about exception handling bugs

[] Most of the time
[] Always

13. Estimate the percentage of bugs related to exception handling code
in your projects: (estimate a value between 0 and 100%)

14. Have you ever needed to fix bugs related to exception handling?

[] Yes[] No

14.1. If you answered YES to the previous question, please describe
some of these situations below:

15. Please select below the main causes of bugs related to exception
handling you have ever needed to fix, analyze or have found documented:
(you can select more than one answer)

[] Lack of a handler that should exist
[] No exception thrown in a situation of a known error
[] Programming error in the catch block
[] Programming error in the finally block
Other:

16. What is the average level of difficulty to fix bugs related to
exception handling?

[] Very easy
[] Easy
[] Medium
[] Hard
[] Very hard

Continued on next page

64

Table A.1 – continued from previous page
Questionnaire about exception handling bugs

17. What is the average level of difficulty to fix other bugs that
are not related to exception handling?

[] Very easy
[] Easy
[] Medium
[] Hard
[] Very hard

18. What is the average priority/severity of reported bugs related
to exception handling code?

[] Very low
[] Low
[] Medium
[] High
[] Very High

19. Why do you use exception handling in your projects? (you can
select more than one answer)

[] Organization’s policies
[] Language requirement
[] Importance of feature
[] Your interest in improving the quality of feature
[] Your interest in creating ways to tolerate faults
[] Need to debug a specific part of the code
[] You do not use exception handling
Other:

20. What is your opinion about the quality of the code that performs
exception handling in your projects compared to the quality of other

Continued on next page

65

Table A.1 – continued from previous page
Questionnaire about exception handling bugs

parts of the code?

[] Very bad
[] Bad
[] Reasonable
[] Good
[] Very good

21. If you would like to know about the results of this questionnaire
please fill in your email address in the field below:

66

B
Exception Handling Bugs

This Appendix contains all exception handling bugs found in this study for each system.

B.1 Exception Handling Bugs of Eclipse

Table B.1: Exception handling bugs of Eclipse.

ID Classification
258145 Exception not handled
3309 API doc different from code
21203 Error in the handler
20832 Error in the finally block
116223 Exception not handled
6750 Error in the handler
139160 Exception shuldn’t be thrown
24134 Exception not thrown
39063 Exception shuldn’t be thrown
242292 Exception shuldn’t be thrown
40937 Error in the handler
99113 Exception shuldn’t be thrown
243715 Exception shuldn’t be thrown
363858 Exception not handled
170237 Error in the handler
120865 Exception shuldn’t be thrown

Continued on next page

67

B.1. EXCEPTION HANDLING BUGS OF ECLIPSE

Table B.1 – continued from previous page
ID Classification

114582 Exception not handled
154667 Exception shuldn’t be thrown
129306 Error in the handler
27148 Error in the handler
38495 Error in the handler
298951 Error in the finally block
352447 Exception shuldn’t be thrown
35614 Exception not handled
50904 Error in the handler
109118 Exception not handled
120559 Exception not thrown
148970 Exception not handled
306917 General catch block
6528 Exception not handled
6779 Error in the handler
14230 Error in the handler
15182 Exception not handled
21018 Error in the handler
23361 Error in the handler
29790 Exception not handled
31016 Exception not handled
32219 API doc different from code
40020 Exception shuldn’t be thrown
47160 Error in the handler
48732 Exception shuldn’t be thrown
61075 Error in the handler
63077 Wrong exception thrown
63513 Exception shuldn’t be thrown
64299 Error in the handler
67289 Error in the handler
69586 Exception not handled
74934 Exception not thrown

Continued on next page

68

B.1. EXCEPTION HANDLING BUGS OF ECLIPSE

Table B.1 – continued from previous page
ID Classification

79395 Wrong exception thrown
94689 Error in the handler
97764 Error in the handler
126727 Exception shuldn’t be thrown
132494 Exception not thrown
137619 Exception not handled
138167 Exception not handled
140750 Exception not handled
143013 Exception not handled
143259 Error in the finally block
144450 Error in the handler
178013 Error in the handler
187265 Exception not handled
195823 Error in the handler
196714 Exception not handled
210152 Exception not handled
221723 Empty catch block
222284 Exception not handled
227531 Error in the handler
229480 Error in the handler
230128 Exception not handled
232496 Exception not thrown
245518 Wrong exception thrown
245830 Wrong exception thrown
255974 Wrong exception thrown
284789 Exception not handled
298250 Exception not handled
302455 Exception not handled
305001 Exception not handled
342757 Exception not handled
352665 Error in the handler
398272 Exception not handled

Continued on next page

69

B.2. EXCEPTION HANDLING BUGS OF TOMCAT

Table B.1 – continued from previous page
ID Classification

14588 Exception not handled
41602 API doc different from code
61996 Error in the definition of exception class
392132 Error in the handler
395658 Error in the handler
9395 Error in the finally block
234307 Exception not handled
10679 Exception shuldn’t be thrown
37331 Exception not handled
44274 Exception not handled
65237 Error in the handler
95480 Exception not handled

B.2 Exception Handling Bugs of Tomcat

Table B.2: Exception handling bugs of Tomcat.

ID Classification
13140 Exception not thrown
13138 Exception not thrown
53333 Exception not handled
49240 Exception not handled
42449 Exception not handled
5797 Exception not handled
19238 Exception not handled
46298 Wrong exception thrown
29093 Exception not handled
22691 Exception not handled
48582 Error in the handler
12088 Error in the handler

Continued on next page

70

B.2. EXCEPTION HANDLING BUGS OF TOMCAT

Table B.2 – continued from previous page
ID Classification

40241 General catch block
46967 Exception not handled
52461 Exception not handled
18200 Error in the handler
17687 Error in the handler
16181 Error in the handler
14658 Error in the handler
2500 Error in the handler
43174 Error in the handler
50929 Invalid or non-existent cause associated with exception
5998 Invalid or non-existent cause associated with exception
53421 Invalid or non-existent cause associated with exception
42650 Exception not handled
48644 General catch block
36994 Exception shouldn’t be thrown
8013 Exception not handled
5829 Error in the handler
53830 Error in the handler
15404 Exception not thrown
19117 Exception not thrown
16727 Wrong exception thrown
16731 Exception not thrown
17611 Exception not thrown
16129 Exception not thrown
16728 Exception not thrown
17390 Exception not thrown
6196 Wrong exception thrown
49128 Error in the handler
49127 General catch block
54256 Exception not handled
39126 Error in the handler
53545 Error in the handler

Continued on next page

71

B.2. EXCEPTION HANDLING BUGS OF TOMCAT

Table B.2 – continued from previous page
ID Classification

175 Invalid or non-existent cause associated with exception
238 Error in the handler
339 Exception not handled
117 Wrong exception thrown
1316 Error in the handler
644 Error in the handler
434 Error in the handler
41752 Invalid or non-existent cause associated with exception
40133 Wrong exception thrown
2779 Invalid or non-existent cause associated with exception
22113 empty catch block
6130 Exception not handled
8200 Exception not thrown
15754 Exception not thrown
3307 Exception not thrown
18201 Exception not thrown
4023 Error in the handler
19864 Error in the handler
15851 Error in the handler
54087 Exception not handled
53225 Error in the handler
52543 Error in the handler
51893 Wrong exception thrown
48810 Error in the handler
54007 Error in the handler
42434 Error in the handler
48454 Exception not handled
51647 Exception not handled
54284 Wrong exception thrown
53529 Error in the handler
41530 Error in the handler
35984 Error in the handler

Continued on next page

72

B.2. EXCEPTION HANDLING BUGS OF TOMCAT

Table B.2 – continued from previous page
ID Classification

42181 Exception not handled
47499 Error in the handler
51324 Error in the handler
51550 Error in the handler
50571 Error in the handler
48007 Exception not handled
51088 Error in the handler
34080 Invalid or non-existent cause associated with exception
45737 Exception shouldn’t be thrown
10907 Error in the handler
26191 Exception not handled
31052 Invalid or non-existent cause associated with exception
3870 Error in the handler
42039 Invalid or non-existent cause associated with exception
54458 Invalid or non-existent cause associated with exception
52091 Error in the finally block
52591 Exception not handled
48179 Error in the handler
51713 Error in the handler
43887 Invalid or non-existent cause associated with exception
44787 Error in the handler
47437 Invalid or non-existent cause associated with exception
12657 Exception not handled
18698 Exception shouldn’t be thrown
4501 Wrong exception thrown
5507 Exception not handled
24861 Invalid or non-existent cause associated with exception
24368 Error in the handler
13552 Error in the handler
19049 Invalid or non-existent cause associated with exception
17736 Error in the handler
29387 Error in the handler

Continued on next page

73

B.2. EXCEPTION HANDLING BUGS OF TOMCAT

Table B.2 – continued from previous page
ID Classification

19034 Exception not handled
14283 Exception not handled
4383 Invalid or non-existent cause associated with exception
45603 Error in the handler
15795 Exception shouldn’t be thrown
27790 Error in the handler
522 Error in the handler
6332 Invalid or non-existent cause associated with exception
31171 Error in the handler
46223 Wrong exception thrown
18204 Exception not thrown
15967 Exception not thrown
12717 Exception not thrown
12654 Exception not thrown
13094 Exception not thrown
4609 Exception not thrown
15904 Exception not thrown
2655 Exception not thrown
40960 Wrong exception thrown
19114 Invalid or non-existent cause associated with exception

74

C
R Scripts

This Appendix contains all R Scripts used in this study for each system.

C.1 Eclipse R Script

Listing C.1 Eclipse.R.

1 l i b r a r y (sm)
2 l i b r a r y (v i o p l o t)
3
4 d a d o s E c l i p s e O t h e r s <� read . csv (" bugs�e c l i p s e �o t h e r s . o u t " ,

sep =" " , h e a d e r =TRUE, b l a n k . l i n e s . s k i p =TRUE)
5 d a d o s E c l i p s e B u g s <� read . csv (" bugs�e c l i p s e �92. o u t " , sep ="

" , h e a d e r =TRUE, b l a n k . l i n e s . s k i p =TRUE)
6 d a d o s E c l i p s e S e a r c h <� read . csv (" bugs�e c l i p s e �s e a r c h . o u t " ,

sep =" " , h e a d e r =TRUE, b l a n k . l i n e s . s k i p =TRUE)
7
8 e c l i p s e B u g O t h e r s <� d a d o s E c l i p s e O t h e r s $bug_ i d
9 e c l i p s e C r e a t i o n D a t e O t h e r s <� d a d o s E c l i p s e O t h e r s $ c r e a t i o n _

date
10 e c l i p s e F i x D a t e O t h e r s <� d a d o s E c l i p s e O t h e r s $ f i x _ date
11 e c l i p s e F i x T i m e O t h e r s <� d a d o s E c l i p s e O t h e r s $ f i x _ t ime
12 e c l i p s e C o m m e n t s O t h e r s <� d a d o s E c l i p s e O t h e r s $ comments _

number
13 e c l i p s e A t t a c h O t h e r s <� d a d o s E c l i p s e O t h e r s $ has _ a t t a c h
14 e c l i p s e P r i o r i t y O t h e r s <� d a d o s E c l i p s e O t h e r s $ p r i o r i t y

75

C.1. ECLIPSE R SCRIPT

15 e c l i p s e S e v e r i t y O t h e r s <� d a d o s E c l i p s e O t h e r s $ s e v e r i t y
16 e c l i p s e S t a t u s O t h e r s <� d a d o s E c l i p s e O t h e r s $ s t a t u s
17 e c l i p s e R e s o l u t i o n O t h e r s <� d a d o s E c l i p s e O t h e r s $ r e s o l u t i o n
18 e c l i p s e A s s i g n e d O t h e r s <� d a d o s E c l i p s e O t h e r s $ a s s i g n e d
19 e c l i p s e R e p o r t e r O t h e r s <� d a d o s E c l i p s e O t h e r s $ r e p o r t e r
20
21 e c l i p s e B u g B u g s <� d a d o s E c l i p s e B u g s $bug_ i d
22 e c l i p s e C r e a t i o n D a t e B u g s <� d a d o s E c l i p s e B u g s $ c r e a t i o n _ date
23 e c l i p s e F i x D a t e B u g s <� d a d o s E c l i p s e B u g s $ f i x _ date
24 e c l i p s e F i x T i m e B u g s <� d a d o s E c l i p s e B u g s $ f i x _ t ime
25 ec l ipseCommentsBugs <� d a d o s E c l i p s e B u g s $ comments _ number
26 e c l i p s e A t t a c h B u g s <� d a d o s E c l i p s e B u g s $ has _ a t t a c h
27 e c l i p s e P r i o r i t y B u g s <� d a d o s E c l i p s e B u g s $ p r i o r i t y
28 e c l i p s e S e v e r i t y B u g s <� d a d o s E c l i p s e B u g s $ s e v e r i t y
29 e c l i p s e S t a t u s B u g s <� d a d o s E c l i p s e B u g s $ s t a t u s
30 e c l i p s e R e s o l u t i o n B u g s <� d a d o s E c l i p s e B u g s $ r e s o l u t i o n
31 e c l i p s e A s s i g n e d B u g s <� d a d o s E c l i p s e B u g s $ a s s i g n e d
32 e c l i p s e R e p o r t e r B u g s <� d a d o s E c l i p s e B u g s $ r e p o r t e r
33
34 e c l i p s e B u g S e a r c h <� d a d o s E c l i p s e S e a r c h $bug_ i d
35 e c l i p s e C r e a t i o n D a t e S e a r c h <� d a d o s E c l i p s e S e a r c h $ c r e a t i o n _

date
36 e c l i p s e F i x D a t e S e a r c h <� d a d o s E c l i p s e S e a r c h $ f i x _ date
37 e c l i p s e F i x T i m e S e a r c h <� d a d o s E c l i p s e S e a r c h $ f i x _ t ime
38 e c l i p se C o m me n t s S ea r c h <� d a d o s E c l i p s e S e a r c h $ comments _

number
39 e c l i p s e A t t a c h S e a r c h <� d a d o s E c l i p s e S e a r c h $ has _ a t t a c h
40 e c l i p s e P r i o r i t y S e a r c h <� d a d o s E c l i p s e S e a r c h $ p r i o r i t y
41 e c l i p s e S e v e r i t y S e a r c h <� d a d o s E c l i p s e S e a r c h $ s e v e r i t y
42 e c l i p s e S t a t u s S e a r c h <� d a d o s E c l i p s e S e a r c h $ s t a t u s
43 e c l i p s e R e s o l u t i o n S e a r c h <� d a d o s E c l i p s e S e a r c h $ r e s o l u t i o n
44 e c l i p s e A s s i g n e d S e a r c h <� d a d o s E c l i p s e S e a r c h $ a s s i g n e d
45 e c l i p s e R e p o r t e r S e a r c h <� d a d o s E c l i p s e S e a r c h $ r e p o r t e r
46
47 ## r e p o r t e r

76

C.1. ECLIPSE R SCRIPT

48 summary (e c l i p s e R e p o r t e r O t h e r s)
49 summary (e c l i p s e R e p o r t e r B u g s)
50 summary (e c l i p s e R e p o r t e r S e a r c h)
51
52 ## a s s i g n e d
53 summary (e c l i p s e A s s i g n e d O t h e r s)
54 summary (e c l i p s e A s s i g n e d B u g s)
55 summary (e c l i p s e A s s i g n e d S e a r c h)
56
57 ## r e s o l u t i o n
58 summary (e c l i p s e R e s o l u t i o n O t h e r s)
59 b a r p l o t (t a b l e (e c l i p s e R e s o l u t i o n O t h e r s) , main=" E c l i p s e

R e s o l u t i o n " , x l a b =" O t h e r s ")
60 summary (e c l i p s e R e s o l u t i o n B u g s)
61 b a r p l o t (t a b l e (e c l i p s e R e s o l u t i o n B u g s) , main=" E c l i p s e

R e s o l u t i o n " , x l a b =" Bugs ")
62 summary (e c l i p s e R e s o l u t i o n S e a r c h)
63
64 ## s t a t u s
65 summary (e c l i p s e S t a t u s O t h e r s)
66 b a r p l o t (t a b l e (e c l i p s e S t a t u s O t h e r s) , main=" E c l i p s e S t a t u s " ,

x l a b =" O t h e r s ")
67 summary (e c l i p s e S t a t u s B u g s)
68 b a r p l o t (t a b l e (e c l i p s e S t a t u s B u g s) , main=" E c l i p s e S t a t u s " ,

x l a b =" Bugs ")
69 summary (e c l i p s e S t a t u s S e a r c h)
70
71 ## messages
72 summary (e c l i p s e C o m m e n t s O t h e r s)
73 h i s t (ec l i p seCommen t sOthe r s , main=" E c l i p s e Comments " , x l a b =

" O t h e r s ")
74 boxp lo t (ec l i p seCommen t sOthe r s , main=" E c l i p s e Comments " ,

x l a b =" O t h e r s ")
75 var (e c l i p s e C o m m e n t s O t h e r s)
76 sd (e c l i p s e C o m m e n t s O t h e r s)

77

C.1. ECLIPSE R SCRIPT

77 v i o p l o t (ec l ip seCommen t sOthe r s , names=c (" O t h e r s "))
78 t i t l e (" E c l i p s e Comments ")
79 summary (ec l ipseCommentsBugs)
80 h i s t (ec l ipseCommentsBugs , main=" E c l i p s e Comments " , x l a b ="

Bugs ")
81 boxp lo t (ec l ipseCommentsBugs , main=" E c l i p s e Comments " , x l a b

=" Bugs ")
82 var (ec l ipseCommentsBugs)
83 sd (ec l ipseCommentsBugs)
84 v i o p l o t (ec l ipseCommentsBugs , names=c (" Bugs "))
85 t i t l e (" E c l i p s e Comments ")
86 boxp lo t (ec l i p seCommen t sOthe r s , ec l ipseCommentsBugs , main="

E c l i p s e Comments " , names=c (" O t h e r s " , " Bugs "))
87 v i o p l o t (ec l i p seCommen t sOthe r s , ec l ipseCommentsBugs , names=

c (" O t h e r s " , " Bugs "))
88 t i t l e (" E c l i p s e Comments ")
89 summary (e c l i p s e C o m me n t s S e a r c h)
90 var (e c l i p s e C o m me n t s Se a r c h)
91 sd (e c l i p s e C o m me n t s S e a r c h)
92
93 ## s e v e r i t y
94 summary (e c l i p s e S e v e r i t y O t h e r s)
95 p i e (t a b l e (e c l i p s e S e v e r i t y O t h e r s) , main=" E c l i p s e O t h e r s

S e v e r i t y ")
96 b a r p l o t (t a b l e (e c l i p s e S e v e r i t y O t h e r s) , main=" E c l i p s e

S e v e r i t y " , x l a b =" O t h e r s ")
97 summary (e c l i p s e S e v e r i t y B u g s)
98 p i e (t a b l e (e c l i p s e S e v e r i t y B u g s) , main=" E c l i p s e Bugs

S e v e r i t y ")
99 b a r p l o t (t a b l e (e c l i p s e S e v e r i t y B u g s) , main=" E c l i p s e S e v e r i t y

" , x l a b =" Bugs ")
100 summary (e c l i p s e S e v e r i t y S e a r c h)
101
102 ## p r i o r i t y
103 summary (e c l i p s e P r i o r i t y O t h e r s)

78

C.1. ECLIPSE R SCRIPT

104 p i e (t a b l e (e c l i p s e P r i o r i t y O t h e r s) , main=" E c l i p s e O t h e r s
P r i o r i t y ")

105 b a r p l o t (t a b l e (e c l i p s e P r i o r i t y O t h e r s) , main=" E c l i p s e
P r i o r i t y " , x l a b =" O t h e r s ")

106 summary (e c l i p s e P r i o r i t y B u g s)
107 p i e (t a b l e (e c l i p s e P r i o r i t y B u g s) , main=" E c l i p s e Bugs

P r i o r i t y ")
108 b a r p l o t (t a b l e (e c l i p s e P r i o r i t y B u g s) , main=" E c l i p s e P r i o r i t y

" , x l a b =" Bugs ")
109 summary (e c l i p s e P r i o r i t y S e a r c h)
110
111 ## f i x t i m e
112 summary (e c l i p s e F i x T i m e O t h e r s)
113 h i s t (e c l i p s e F i x T i m e O t h e r s , main=" E c l i p s e O t h e r s F ix Time " ,

x l a b =" Days ")
114 boxp lo t (e c l i p s e F i x T i m e O t h e r s , main=" E c l i p s e O t h e r s F ix

Time " , x l a b =" Days ")
115 var (e c l i p s e F i x T i m e O t h e r s)
116 sd (e c l i p s e F i x T i m e O t h e r s)
117 v i o p l o t (e c l i p s e F i x T i m e O t h e r s , names=c (" O t h e r s "))
118 t i t l e (" E c l i p s e F ix Time ")
119 summary (e c l i p s e F i x T i m e B u g s)
120 h i s t (e c l i p s e F i x T i m e B u g s , main=" E c l i p s e Bugs Fix Time " ,

x l a b =" Days ")
121 boxp lo t (e c l i p s e F i x T i m e B u g s , main=" E c l i p s e Bugs Fix Time " ,

x l a b =" Days ")
122 var (e c l i p s e F i x T i m e B u g s)
123 sd (e c l i p s e F i x T i m e B u g s)
124 v i o p l o t (e c l i p s e F i x T i m e B u g s , names=c (" Bugs "))
125 t i t l e (" E c l i p s e F ix Time ")
126 boxp lo t (e c l i p s e F i x T i m e O t h e r s , e c l i p s e F i x T i m e B u g s , main="

E c l i p s e F ix Time " , names=c (" O t h e r s " , " Bugs "))
127 v i o p l o t (e c l i p s e F i x T i m e O t h e r s , e c l i p s e F i x T i m e B u g s , names=c (

" O t h e r s " , " Bugs "))
128 t i t l e (" E c l i p s e F ix Time ")

79

C.2. TOMCAT R SCRIPT

129 summary (e c l i p s e F i x T i m e S e a r c h)
130 var (e c l i p s e F i x T i m e S e a r c h)
131 sd (e c l i p s e F i x T i m e S e a r c h)
132
133 ## a t t a c h
134 summary (e c l i p s e A t t a c h O t h e r s)
135 b a r p l o t (t a b l e (e c l i p s e A t t a c h O t h e r s) / l e n g t h (

e c l i p s e A t t a c h O t h e r s) , main=" E c l i p s e At t achmen t " , x l a b ="
O t h e r s " , names . a r g =c ("No a t t a c h e m e n t " , " With a t t a c h m e n t
"))

136 summary (e c l i p s e A t t a c h B u g s)
137 b a r p l o t (t a b l e (e c l i p s e A t t a c h B u g s) / l e n g t h (e c l i p s e A t t a c h B u g s)

, main=" E c l i p s e At t achmen t " , x l a b =" Bugs " , names . a r g =c ("
No a t t a c h e m e n t " , " With a t t a c h m e n t "))

138 summary (e c l i p s e A t t a c h S e a r c h)
139
140 ## t e s t s
141 t . t e s t (e c l i p s e F i x T i m e O t h e r s , e c l i p s e F i x T i m e B u g s)
142 t . t e s t (e c l i p s e F i x T i m e O t h e r s , e c l i p s e F i x T i m e B u g s ,

a l t e r n a t i v e = " g r e a t e r ")
143 t . t e s t (ec l i p seComment sOthe r s , ec l ipseCommentsBugs)
144 t . t e s t (ec l i p seComment sOthe r s , ec l ipseCommentsBugs ,

a l t e r n a t i v e = " l e s s ")
145 t . t e s t (ec l i p seComment sOthe r s , e c l i p s e C om m e n t sS e a r ch)
146 t . t e s t (e c l i p s e F i x T i m e O t h e r s , e c l i p s e F i x T i m e S e a r c h)

C.2 Tomcat R Script

Listing C.2 Tomcat.R.

1 l i b r a r y (sm)
2 l i b r a r y (v i o p l o t)
3
4 dadosTomca tOthe r s <� read . csv (" bugs�tomcat�o t h e r s . o u t " ,

sep =" " , h e a d e r =TRUE, b l a n k . l i n e s . s k i p =TRUE)

80

C.2. TOMCAT R SCRIPT

5 dadosTomcatBugs <� read . csv (" bugs�tomcat �128. o u t " , sep =" "
, h e a d e r =TRUE, b l a n k . l i n e s . s k i p =TRUE)

6 dadosTomca tSearch <� read . csv (" bugs�tomcat�s e a r c h . o u t " ,
sep =" " , h e a d e r =TRUE, b l a n k . l i n e s . s k i p =TRUE)

7
8 tomca tBugOthe r s <� dadosTomca tOthe r s $bug_ i d
9 t o m c a t C r e a t i o n D a t e O t h e r s <� dadosTomca tOthe r s $ c r e a t i o n _

date
10 t o m c a t F i x D a t e O t h e r s <� dadosTomca tOthe r s $ f i x _ date
11 t o m c a t F i x T i m e O t h e r s <� dadosTomca tOthe r s $ f i x _ t ime
12 tomcatCommentsOthers <� dadosTomca tOthe r s $ comments _ number
13 t o m c a t A t t a c h O t h e r s <� dadosTomca tOthe r s $ has _ a t t a c h
14 t o m c a t P r i o r i t y O t h e r s <� dadosTomca tOthe r s $ p r i o r i t y
15 t o m c a t S e v e r i t y O t h e r s <� dadosTomca tOthe r s $ s e v e r i t y
16 t o m c a t S t a t u s O t h e r s <� dadosTomca tOthe r s $ s t a t u s
17 t o m c a t R e s o l u t i o n O t h e r s <� dadosTomca tOthe r s $ r e s o l u t i o n
18 t o m c a t A s s i g n e d O t h e r s <� dadosTomca tOthe r s $ a s s i g n e d
19 t o m c a t R e p o r t e r O t h e r s <� dadosTomca tOthe r s $ r e p o r t e r
20
21 tomcatBugBugs <� dadosTomcatBugs $bug_ i d
22 t o m c a t C r e a t i o n D a t e B u g s <� dadosTomcatBugs $ c r e a t i o n _ date
23 tomca tF ixDa teBugs <� dadosTomcatBugs $ f i x _ date
24 tomcatFixTimeBugs <� dadosTomcatBugs $ f i x _ t ime
25 tomcatCommentsBugs <� dadosTomcatBugs $ comments _ number
26 t o m c a t A t t a c h B u g s <� dadosTomcatBugs $ has _ a t t a c h
27 t o m c a t P r i o r i t y B u g s <� dadosTomcatBugs $ p r i o r i t y
28 t o m c a t S e v e r i t y B u g s <� dadosTomcatBugs $ s e v e r i t y
29 t o m c a t S t a t u s B u g s <� dadosTomcatBugs $ s t a t u s
30 t o m c a t R e s o l u t i o n B u g s <� dadosTomcatBugs $ r e s o l u t i o n
31 tomca tAss ignedBugs <� dadosTomcatBugs $ a s s i g n e d
32 t o m c a t R e p o r t e r B u g s <� dadosTomcatBugs $ r e p o r t e r
33
34 tomca tBugSearch <� dadosTomca tSearch $bug_ i d
35 t o m c a t C r e a t i o n D a t e S e a r c h <� dadosTomca tSearch $ c r e a t i o n _

date

81

C.2. TOMCAT R SCRIPT

36 t o m c a t F i x D a t e S e a r c h <� dadosTomca tSearch $ f i x _ date
37 t om c a t F i x T i me S ea r ch <� dadosTomca tSearch $ f i x _ t ime
38 tomcatCommentsSearch <� dadosTomca tSearch $ comments _ number
39 t o m c a t A t t a c h S e a r c h <� dadosTomca tSearch $ has _ a t t a c h
40 t o m c a t P r i o r i t y S e a r c h <� dadosTomca tSearch $ p r i o r i t y
41 t o m c a t S e v e r i t y S e a r c h <� dadosTomca tSearch $ s e v e r i t y
42 t o m c a t S t a t u s S e a r c h <� dadosTomca tSearch $ s t a t u s
43 t o m c a t R e s o l u t i o n S e a r c h <� dadosTomca tSearch $ r e s o l u t i o n
44 t o m c a t A s s i g n e d S e a r c h <� dadosTomca tSearch $ a s s i g n e d
45 t o m c a t R e p o r t e r S e a r c h <� dadosTomca tSearch $ r e p o r t e r
46
47 ## r e p o r t e r
48 summary (t o m c a t R e p o r t e r O t h e r s)
49 summary (t o m c a t R e p o r t e r B u g s)
50 summary (t o m c a t R e p o r t e r S e a r c h)
51
52 ## a s s i g n e d
53 summary (t o m c a t A s s i g n e d O t h e r s)
54 summary (t omca tAss ignedBugs)
55 summary (t o m c a t A s s i g n e d S e a r c h)
56
57 ## r e s o l u t i o n
58 summary (t o m c a t R e s o l u t i o n O t h e r s)
59 b a r p l o t (t a b l e (t o m c a t R e s o l u t i o n O t h e r s) , main=" Tomcat

R e s o l u t i o n " , x l a b =" O t h e r s ")
60 summary (t o m c a t R e s o l u t i o n B u g s)
61 b a r p l o t (t a b l e (t o m c a t R e s o l u t i o n B u g s) , main=" Tomcat

R e s o l u t i o n " , x l a b =" Bugs ")
62 summary (t o m c a t R e s o l u t i o n S e a r c h)
63
64 ## s t a t u s
65 summary (t o m c a t S t a t u s O t h e r s)
66 b a r p l o t (t a b l e (t o m c a t S t a t u s O t h e r s) , main=" Tomcat S t a t u s " ,

x l a b =" O t h e r s ")
67 summary (t o m c a t S t a t u s B u g s)

82

C.2. TOMCAT R SCRIPT

68 b a r p l o t (t a b l e (t o m c a t S t a t u s B u g s) , main=" Tomcat S t a t u s " ,
x l a b =" Bugs ")

69 summary (t o m c a t S t a t u s S e a r c h)
70
71 ## messages
72 summary (tomcatCommentsOthers)
73 h i s t (tomcatCommentsOthers , main=" Tomcat Comments " , x l a b ="

O t h e r s ")
74 boxp lo t (tomcatCommentsOthers , main=" Tomcat Comments " , x l a b

=" O t h e r s ")
75 var (tomcatCommentsOthers)
76 sd (tomcatCommentsOthers)
77 v i o p l o t (tomcatCommentsOthers , names=c (" O t h e r s "))
78 t i t l e (" Tomcat Comments ")
79 summary (tomcatCommentsBugs)
80 h i s t (tomcatCommentsBugs , main=" Tomcat Comments " , x l a b ="

Bugs ")
81 boxp lo t (tomcatCommentsBugs , main=" Tomcat Comments " , x l a b ="

Bugs ")
82 var (tomcatCommentsBugs)
83 sd (tomcatCommentsBugs)
84 v i o p l o t (tomcatCommentsBugs , names=c (" Bugs "))
85 t i t l e (" Tomcat Comments ")
86 boxp lo t (tomcatCommentsOthers , tomcatCommentsBugs , main="

Tomcat Comments " , names=c (" O t h e r s " , " Bugs "))
87 v i o p l o t (tomcatCommentsOthers , tomcatCommentsBugs , names=c (

" O t h e r s " , " Bugs "))
88 t i t l e (" Tomcat Comments ")
89 summary (tomcatCommentsSearch)
90 var (tomcatCommentsSearch)
91 sd (tomcatCommentsSearch)
92
93 ## s e v e r i t y
94 summary (t o m c a t S e v e r i t y O t h e r s)

83

C.2. TOMCAT R SCRIPT

95 p i e (t a b l e (t o m c a t S e v e r i t y O t h e r s) , main=" Tomcat O t h e r s
S e v e r i t y ")

96 b a r p l o t (t a b l e (t o m c a t S e v e r i t y O t h e r s) , main=" Tomcat S e v e r i t y
" , x l a b =" O t h e r s ")

97 summary (t o m c a t S e v e r i t y B u g s)
98 p i e (t a b l e (t o m c a t S e v e r i t y B u g s) , main=" Tomcat Bugs S e v e r i t y "

)
99 b a r p l o t (t a b l e (t o m c a t S e v e r i t y B u g s) , main=" Tomcat S e v e r i t y " ,

x l a b =" Bugs ")
100 summary (t o m c a t S e v e r i t y S e a r c h)
101
102 ## p r i o r i t y
103 summary (t o m c a t P r i o r i t y O t h e r s)
104 p i e (t a b l e (t o m c a t P r i o r i t y O t h e r s) , main=" Tomcat O t h e r s

P r i o r i t y ")
105 b a r p l o t (t a b l e (t o m c a t P r i o r i t y O t h e r s) , main=" Tomcat P r i o r i t y

" , x l a b =" O t h e r s ")
106 summary (t o m c a t P r i o r i t y B u g s)
107 p i e (t a b l e (t o m c a t P r i o r i t y B u g s) , main=" Tomcat Bugs P r i o r i t y "

)
108 b a r p l o t (t a b l e (t o m c a t P r i o r i t y B u g s) , main=" Tomcat P r i o r i t y " ,

x l a b =" Bugs ")
109 summary (t o m c a t P r i o r i t y S e a r c h)
110
111 ## f i x t i m e
112 summary (t o m c a t F i x T i m e O t h e r s)
113 h i s t (t omca tF ixT imeOthe r s , main=" Tomcat O t h e r s F ix Time " ,

x l a b =" Days ")
114 boxp lo t (t omca tF ixT imeOthe r s , main=" Tomcat O t h e r s F ix Time "

, x l a b =" Days ")
115 var (t o m c a t F i x T i m e O t h e r s)
116 sd (t o m c a t F i x T i m e O t h e r s)
117 v i o p l o t (t omca tF ixT imeOthe r s , names=c (" O t h e r s "))
118 t i t l e (" Tomcat F ix Time ")
119 summary (tomcatFixTimeBugs)

84

C.2. TOMCAT R SCRIPT

120 h i s t (tomcatFixTimeBugs , main=" Tomcat Bugs F ix Time " , x l a b =
" Days ")

121 boxp lo t (tomcatFixTimeBugs , main=" Tomcat Bugs Fix Time " ,
x l a b =" Days ")

122 var (tomcatFixTimeBugs)
123 sd (tomcatFixTimeBugs)
124 v i o p l o t (tomcatFixTimeBugs , names=c (" Bugs "))
125 t i t l e (" Tomcat F ix Time ")
126 boxp lo t (t omca tF ixT imeOthe r s , tomcatFixTimeBugs , main="

Tomcat F ix Time " , names=c (" O t h e r s " , " Bugs "))
127 v i o p l o t (t omca tF ixT imeOthe r s , tomcatFixTimeBugs , names=c ("

O t h e r s " , " Bugs "))
128 t i t l e (" Tomcat F ix Time ")
129 summary (t om c a t F i x T i me S e a r c h)
130 var (t om ca t F i x T i me S e a r c h)
131 sd (t om c a t F i x T i me S e a r c h)
132
133 ## a t t a c h
134 summary (t o m c a t A t t a c h O t h e r s)
135 b a r p l o t (t a b l e (t o m c a t A t t a c h O t h e r s) / l e n g t h (

t o m c a t A t t a c h O t h e r s) , main=" Tomcat At t achmen t " , x l a b ="
O t h e r s " , names . a r g =c ("No a t t a c h e m e n t " , " With a t t a c h m e n t
"))

136 summary (t o m c a t A t t a c h B u g s)
137 b a r p l o t (t a b l e (t o m c a t A t t a c h B u g s) / l e n g t h (t o m c a t A t t a c h B u g s) ,

main=" Tomcat At t achmen t " , x l a b =" Bugs " , names . a r g =c ("No
a t t a c h e m e n t " , " With a t t a c h m e n t "))

138 summary (t o m c a t A t t a c h S e a r c h)
139
140 ## t e s t s
141 t . t e s t (t omca tF ixT imeOthe r s , tomcatFixTimeBugs)
142 t . t e s t (t omca tF ixT imeOthe r s , tomcatFixTimeBugs , a l t e r n a t i v e

= " g r e a t e r ")
143 t . t e s t (t omca tF ixT imeOthe r s , tomcatFixTimeBugs , a l t e r n a t i v e

= " l e s s ")

85

C.2. TOMCAT R SCRIPT

144 t . t e s t (tomcatCommentsOthers , tomcatCommentsBugs)
145 t . t e s t (tomcatCommentsOthers , tomcatCommentsBugs ,

a l t e r n a t i v e = " g r e a t e r ")
146 t . t e s t (tomcatCommentsOthers , tomcatCommentsBugs ,

a l t e r n a t i v e = " l e s s ")
147 t . t e s t (t omca tF ixT imeOthe r s , t o m ca tF i xT im e Se a r c h)
148 t . t e s t (tomcatCommentsOthers , tomcatCommentsSearch)

86

	List of Figures
	List of Tables
	Introduction
	Problem
	Objective
	Contribution
	Outline

	Background
	Exception Handling
	Exception Handling in Java
	Exception Handling Antipatterns in Java
	Swallowed Exception
	Exception Not Handled at Appropriate Level
	Log and throw
	Throwing Exception
	Throwing The Kitchen Sink
	Catching Exception
	Destructive Wrapping
	Log and return null
	catch and Ignore
	throw from Within finally
	Multi-Line Log Messages
	Relying on getCause()

	Methodology
	What is an Exception Handling Bug?
	Repository Analysis
	Survey

	Study Results
	RQ1: Do organizations and developers take exception handling into account?
	Survey
	Repository Analysis

	RQ2: How commonplace are exception handling bugs?
	Survey
	Repository Analysis

	RQ3: Are exception handling bugs harder to fix than other bugs?
	Survey
	Repository Analysis

	RQ4: What are the main causes of exception handling bugs?
	Survey
	Repository Analysis

	Discussion
	Exception Handling Bug Classification

	Threats to Validity

	Conclusion
	Related Work
	Future Work

	References
	Appendix
	Survey
	Exception Handling Bugs
	Exception Handling Bugs of Eclipse
	Exception Handling Bugs of Tomcat

	R Scripts
	Eclipse R Script
	Tomcat R Script

